

BUNDESGESELLSCHAFT FÜR ENDLAGERUNG

## COMPARING UNCERTAINTY QUANTIFICATION METHODS FOR MODELLING RADIONUCLIDE TRANSPORT IN NUCLEAR WASTE DISPOSAL SYSTEMS 1st URS PhD Workshop

MERLE BJORGE, AQEEL AFZAL CHAUDHRY, WOLFRAM RÜHAAK, THOMAS NAGEL Hannover, 09.09.2022



#### **INTRODUCTION AND MOTIVATION**



## MODEL BENCHMARK AND APPROACH

- 1D model of the Opalinus Clay
- Analytical solution by Van Genuchten (1981) for advection, sorption and decay [1]
- Migration of iodine 129



- Modelling domain: 160 m
- Node spacing: 0.4 m
- Simulation time: one million years



3 1ST URS PHD WORKSHOP | MERLE BJORGE



#### PARAMETERIZATION

| Parameter                                                                             | Value                 | Reference | 1.5            |
|---------------------------------------------------------------------------------------|-----------------------|-----------|----------------|
| Porosity of OPA [-]                                                                   | 0.12                  | [2]       | оче п. 0<br>ец |
| Bulk Density of OPA<br>[kg/m <sup>3</sup> ]                                           | 2 394                 | [2]       | 0.5            |
| Darcy velocity in OPA<br>[m/s]                                                        | 2 · 10 <sup>-13</sup> | [3]       | 0.0 1.95       |
| Effective diffusion<br>coefficient for <sup>129</sup> I in OPA<br>[m <sup>2</sup> /s] | 1 · 10 <sup>-12</sup> | [2]       | 25000 -        |
| Kd-value for 129I in OPA<br>[m³/kg]                                                   | 3 · 10 <sup>-5</sup>  | [2]       | 20000 -        |
| Half-life of 129I<br>[year]                                                           | 1.6 · 10 <sup>7</sup> | [2]       | 5000           |



4 1ST URS PHD WORKSHOP | MERLE BJORGE

09.09.2022

le14

2.0

GZ: SGNNNNNNNNNNN | Objekt-ID: NNNNNN

### **UNCERTAINTY QUANTIFICATION METHODS AND** RESULTS 1/2

- 1. Calculations based on quantiles and intervals of distributions
  - sample of 100,000 elements from each parameter distribution
  - 0.05-, 0.25-, 0.5-, 0.75- and 0.95-quantile, the minimum and maximum values as input for transport calculations (7 calculations)
    - results: set of discrete values
- 2. Uncertainty Quantification based on full distributions
  - 100,000 calculations
  - Monte-Carlo-Sampling of uncertain parameters
    - results: 100,000 results, from which statistical properties can be calculated





GZ: SGNNNNNNNNNNN | Objekt-ID: NNNNNN

# UNCERTAINTY QUANTIFICATION METHODS AND RESULTS 2/2



- 3. First-order second-moment (FOSM) method
  - Based on Taylor-Series Expansion
  - Expansion around the mean of uncertain parameter
  - Requires knowledge of distribution type (normal, loguniform)
    - results: mean and variance





#### **COMPARISON OF RESULTS**



GZ: SGNNNNNNNNNNN | Objekt-ID: NNNNNN



#### BUNDESGESELLSCHAFT FÜR ENDLAGERUNG

**MERLE BJORGE** 

merle.bjorge@bge.de





#### REFERENCES

- 1. M. T. VAN GENUCHTEN, "Analytical solutions for chemical transport with simultaneous adsorption, zeroorder production and first-order decay," *Journal of Hydrology*, **49**, 213-233 (1981).
- 2. NAGRA, "Project Opalinus Clay Models, Codes, and Data for Safety Assessment," Technical Report 02-06 (2002).
- P. BOSSART, F. BERNIER, J. BIRKHOLZER, C. BRUGGEMAN, P. CONNOLLY, S. DEWONCK, M. FUKAYA, M. HERFORT, M. JENSEN, J.-M. MATRAY, J. C. MAYOR, A. MOERI, T. OYAMA, K. SCHUSTER, N. SHIGETA, T. VIETOR, K. WIECZOREK, "Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments", *Swiss J. Geosci.*, **110**, 3-22 (2017)



#### BACKUP

#### **Analytical Solution by Van Genuchten (1981)**

 $\frac{c}{c_0}(x,t) = H(x,t) + M(x,t)$ 

with

$$H(x,t) = \frac{1}{2} \exp\left[\frac{(v-u)x}{2D_p}\right] \exp\left[\frac{Rx-ut}{2(D_pRt)^{1/2}}\right] + \frac{1}{2} \exp\left[\frac{(v+u)x}{2D_p}\right] \exp\left[\frac{Rx+ut}{2(D_pRt)^{1/2}}\right]$$

and

$$M(x,t) = -\frac{c_{\text{ini}}}{c_0} \exp\left(-\frac{\mu t}{R}\right) \left\{ \frac{1}{2} \operatorname{erf}\left[\frac{Rx - \nu t}{2(D_p R t)^{1/2}}\right] + \frac{1}{2} \exp\left(\frac{\nu x}{D_p}\right) \operatorname{erf}\left[\frac{Rx + \nu t}{2(D_p R t)^{1/2}}\right] \right\} + \frac{c_{\text{ini}}}{c_0} \exp\left(-\frac{\mu t}{R}\right)$$

where

$$u = v \left( 1 + \frac{4\mu D_p}{v^2} \right)^{1/2}$$

and

$$\mu = \frac{\log(2)}{t_{1/2}} \left( 1 + \rho \frac{K_d}{\phi} \right)$$

Initial Conditions:  $c_{ini} = 0 \text{ mol/L}$ Boundary Conditions:  $c_0 = 1 \text{ mol/L}$