



# <u>Risk-based Assessment of Salt Domes as</u> Disposal Sites for <u>N</u>uclear Waste (RADON)

### **Andrea Perin**

Institute for Risk and Reliability Leibniz Universität Hannover





## **Table of Contents**

- Background
  - Reliability Assessment
  - Uncertainties
  - RADoN Project
  - Structural Reliability Methods
  - Bayesian Network
  - Enhanced Bayesian Network
- Application in RADoN project
  - Coupling





## Background





### **Reliability Assesment**

### **Reliability Assessment of Safety Disposal**

'A systematic process of identifying **hazards** and evaluating any associated **risks**' for a given case of study

(British Safety Councill)

### Reliability

- Ability to perform an assigned task for a "Mission Time" under given environmental and operational conditions
- Probability that a component (or system) performs its required function for a "Mission Time" under given environmental and operational conditions



Terminantion (or loss) of ability of a component (or system) to perform its required function

- Classical
- Frequentistic
- Subjective
- Assiomatic (Kolmogorov Assioms)





Richard P. Feynman

### **Uncertainties**



"There is nothing so wrong with the analysis as believing the answer!"

- A result is as good as the assumptions are good
- Uncertainteis evaluation is needed to have a reliable result

#### **Type of Uncertainties**



- **Epistemic** is the uncertainties related to lack of knowledge (can be reduced)
- Aleatory is the uncertainty related the intrinsic randomness of the considered phenomena (cannot be reduced)



- We can potentially associate a random variable to each physical parameter of the model (inefficient)
- Sensitivity analysis is performed to identify the important parameters





## **RADoN Project**



Quantitative risk assessment which takes into account the combined effect of



- One of the most *challenging* part is to identify the hazardous (and not hazardous) events and describe their relationships (CDFs).
- > This process is **expert-knowledge based**.
- The model must be *able to update* all the assumptions on hazardous events CDFs whenever data became available.





## **Reliability Methods**

Evaluation of a system state can be 'safe' with a given set of parameters and 'not safe' with a slightly changed set of parameters

| Concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Methods                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| - The aim of all Reliability Methods is to identy the Failure Probability $p_{f}$ of a system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Approximate Analytical Methods                                                                         |
| <ul> <li>When one (or more) parameter of the system are random<br/>variable (/s) 'X' the system state became dependent on this<br/>random variable(/s).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>First Order Reliability Method</li> <li>Second Order Reliability Method</li> </ul>            |
| • Performance function g(X) is the expression of this dependency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |
| $5.0 \times 10^{5}$<br>$4.0 \times 10^{5}$<br>$3.0 \times 10^{5}$<br>$2.0 \times 10^{5}$<br>$4.0 \times 10^{5}$ | Montecarlo Methods <ul> <li>Standard Montecarlo Method</li> <li>Advanced Montecarlo Methods</li> </ul> |





### **Bayesian Network - Intro**

### What is the aim of Bayesian Network?

- Reliability Methods are able to deal with system complexity and uncertainties related to models parameter
- An exhaustive reliability assessment have to take into account **different possible scenarios**

- Bayesian Network (BN) (Belief Network) are a statistical framework suitable for dealing with a reliability problem considering different possible scenarios, particularly s.t.
  - high-impact
  - Interdisciplinary









### **Bayesian Network – Summary**

### BNs are a tool for evaluating the impact of different scenarios on the reliability of a system

### Model Update

BNs enable **Bayesian Update** of marginal probabilities once new data becames available.

 $\ast\ast$  Once all scenarios are evaluated, the BN works like a container of all the  $p_f,$  being computationally super-efficient



### What-if Anlysis & Decision Making

BNs enable the **propagation of the information on the direction of interest**, therefore the evaluation of the  $p_f$  related to every specific scenario.

\*\*Once all scenarios are evaluated, the BN works like a "container" of all the  $p_f$ , being the TH-model a node of the network => computationally super-efficient

Through the knowledge of the failure probabilities, is possible to determine the most critical scenarios for a **robust long term decision making** (decisional nodes can be implemented in the network)

Analytical solutions can be obtained only with discrete or Gaussian Random Variable





### **Enhanced Bayesian Network – Intro**

#### Structural Reliability Methods

#### Pros:

- Allow **Continuous** rv
- Higly efficient for small probabilities

#### Cons:

- No Bayesian Update
- No graphical form
- Not always suitable for Discrete rvs

#### **Bayesian Networks**

#### **Pros:**

- Higly efficient for **Discrete** rv
- Allow **Bayesian Update** therefore *inference*

#### Cons:

- No Continuous rvs
- Not efficient for small probabilities

The idea of **enhanced** (with structural reliability methods) **BN**, is to *combine* the pros of the BNs and SRMs



#### eBNs are a tool able to:

- Implement Discrete and Continuous rvs
- With arbitrary distributions
- And any dependency





## **Enahnced Bayesian Network – Reduction**



Formally

Continous

Discrete

- Discrete nodes have a finite sample space
- Continuous nodes are vectors of continuous rvs
- **System pdf** is expressed by the combined effect of continous and discrete rvs

$$f(\mathbf{Z}) = \prod_{Yi \in \mathbf{Y}} f(yi|pa[Yi]) + \prod_{Xi \in \mathbf{X}} f(xi|pa[Xi])$$



In order to perform inference with eBNs using exact inference algorythm is necessary to reduce it into a reduce BN

eBN reduction to rBN

#### **Nodes Elimination**

Continuous nodes have to be eliminated through *Shachter* theorems:

- Barren nodes Theorem
- Reverse Link Theorem



#### **Potentials Calculation**

Once rBN is obtained the conditional probabilities of discrete nodes (potentials) need to be updated

Can be demonstrate this problem has the general mathematical form of a Reliability problem. Therefore can be solved through SRMs.



\*\* Discretization of continuous nodes is necessary when evidence is available for them

Title





# Application in RADoN Project





# Coupling

### Basic Concepts of models coupling:

- Important parameters of TH models are treated considering their uncertainties and interdependencies (rvs)
- Hazardous events affects affects models parameters and their distributions (eBN)



### Probability density functions:

- PDFs (or discrete values) of uncertainties parameter of each node of the eBN represent the most challenging point of the coupling process.
- Definition of distributions (or punctual values) will be addressed in 3 ways:
  - Physical Models or real data
  - Research papers
  - Expert-based knowledge







#### Up to now

- Toy example
- Sensitivity Analysis and Failure Probability analysis with few expert-based rvs

Still developing the Bayesian framework for both hazardous and not hazardous events, and their consequences over inputs pdfs.

