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• Assumption: a given function f(x) resembles a 

realization of a Gaussian stochastic process, 

described by a1

• Mean (μ): assumed 0

• Covariance (Σ): a given kernel 

• Trained through input-output pairs, generated by 

the simulator
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Methodology

Gaussian process regression 

1Zhang, J., Li, W., Zeng, L., & Wu, L. (2016). An adaptive Gaussian process‐based method for efficient Bayesian experimental design in groundwater contaminant source 

identification problems. Water Resources Research, 52(8), 5971-5984.

GPE training using a square-exponential covariance kernel

Source: https://scikit-learn.org/stable/modules/gaussian_process.html



• Trained through input-output pairs, generated by 

the simulator

• Predictions for all (future) parameter 

combinations are described by:

• Mean

• Variance

• Surrogate prediction error
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Methodology

Gaussian process regression

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press.

Crevillen-Garcia, D., Wilkinson, R. D., Shah, A. A., & Power, H. (2017). Gaussian process modelling for uncertainty quantification in convectively-enhanced dissolution processes in 

porous media. Advances in water resources, 99, 1-14.

1D input – 1D output example using Gaussian process regression



• High input dimensions:

• Heterogeneity 

• Parameters for different processes

Needs large number of training points

• High output dimension

• Train GPE for each cell and/or each time step

High computational time 
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Challenges

Gaussian process regression

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press.

Configuration of 2D groundwater model, with a 50 m x 50 m grid. 

Allows for different input-output scenarios



05.01.2023University of Stuttgart                                                Maria.F. Morales Oreamuno 8

Work flow
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• For each parameter set, one can get an 

output distribution 

• We can sample from each output 

distribution

• Bayesian inference → obtain information 

from measurements

+

• Information theory: uncertainty associated 

with predictions
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Bayesian Active Learning 

Information theory scores as training point selection criteria using Bayesian active 

learning

Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian3 active learning for the gaussian process emulator using information theory. Entropy, 22(8), 890.

Zhao, H., & Kowalski, J. (2022). Bayesian active learning for parameter calibration of landslide run-out models. Landslides, 1-13.



• Main coding language: 

• Python

• Gaussian process libraries: 

• Scikit Learn

• GPyTorch

• Project collaboration: 

• GitHub

• Literature review

• Zotero
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Tools



• Develop methodologies to train the Gaussian 

process emulator(s) using Bayesian active 

learning

• Convergence criteria

• BAL selection criteria (information theory)

• Consider/reduce potentially high input and output 

dimensions

Step 2:

• Apply methodologies to geophysical models 

• Implement geophysical inversion methods, 

model calibration
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Applications and Outlook

Step 1: test methods using a 

simple, fast model, to be able to 

compare GPE results with a 

reference model

Configuration of 2D groundwater model, with a 50 

m x 50 m grid. Allows for different input-output 

scenarios
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• Main goal: overcome computational time constraints for expensive models 
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Surrogate modelling
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Meta-modelling

Response surface

Model emulator

Different methods 

available…

Neural networks

Gaussian process 

regression

aPCE

Works for a smaller 

number of training 

points

Provides uncertainty 

quantification
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• Bayes’ theorem: update a prior state of knowledge to a posterior based on observation data 
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Bayesian inference

𝑝 𝜔 𝑦𝑜 =
𝑝 𝑦𝑜 𝜔 𝑝(𝜔)

𝑝(𝑦𝑜)

prior
posterior likelihood

Bayesian inference: updating a prior to a posterior using observation data, through a 

likelihood function

Source: Oladyshkin (2022), IWS lecture, University of Stuttgart
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• (Bayesian) Active Learning allows to 

select training points located in regions of 

high posterior likelihood: 

• to improve the surrogate model prediction

• reduce the number of total training points 

needed. 

• For each iteration of the surrogate 

training, one selects the parameter set 𝝎𝒊

which presents the highest gain in 

information as the next training point
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Bayesian active learning

Source: Acuna Espinoza (2021)

Measurement 

data input



• Main goals: 

• Reduce the number of training points

• Uses observation data

• Improve GPE in a specific region

• Criteria

• Information theory scores 

• Chooses points with high uncertainty
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Bayesian Active Learning 

Information theory scores as training point selection criteria using Bayesian active 

learning

Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian3 active learning for the gaussian process emulator using information theory. Entropy, 22(8), 890.

Zhao, H., & Kowalski, J. (2022). Bayesian active learning for parameter calibration of landslide run-out models. Landslides, 1-13.



• 2D flow and transport groundwater model

• Self-made finite-element solver in MATLAB

• < 1 s run time 

• Allows for different input parameters 

• Heterogeneity

• Transport parameters

• Boundary conditions

• High output dimension scenario

• 1 GPE for each output cell 

• Future: test with a 1D geophysical model for a 

more case-specific example
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Simple test case

Application

Configuration of 2D groundwater model, with a 50 m x 50 m grid. 

Allows for different input-output scenarios



• Develop methodologies to train Gaussian process emulators (GPE)

• To reduce computational time and allow for uncertainty quantification and geophysical inversion

• Train GPEs using Bayesian active learning

• Consider observations → give additional information about true processes

• Reduce number of (expensive) runs of physics-based model

• Test/apply methodologies on simple (fast) test cases to compare GPE with reference model

Outlook

• Apply methodologies to (more expensive) geophysical models 

• Use GPEs for Bayesian inversion and model calibration 

• Apply GPEs for optimal experimental design and smart monitoring strategies
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Summary and outlook
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