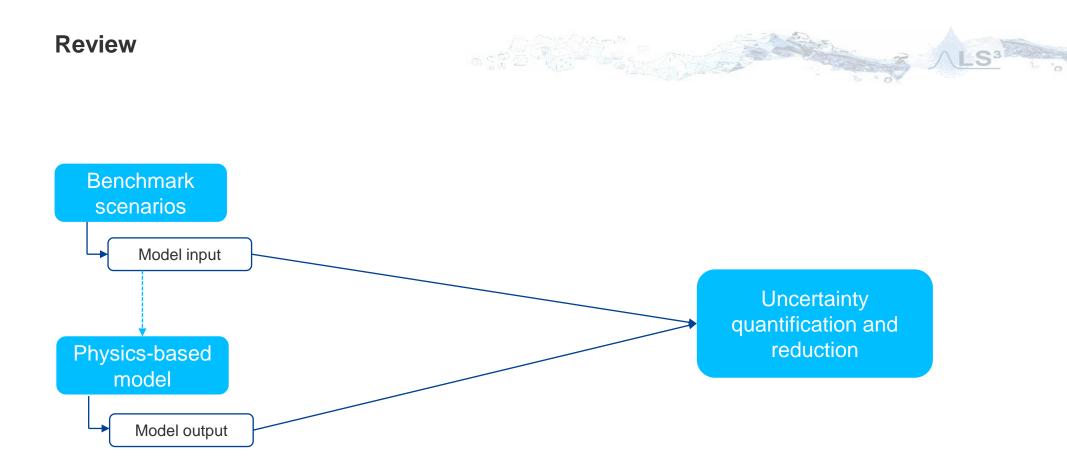


University of Stuttgart Germany

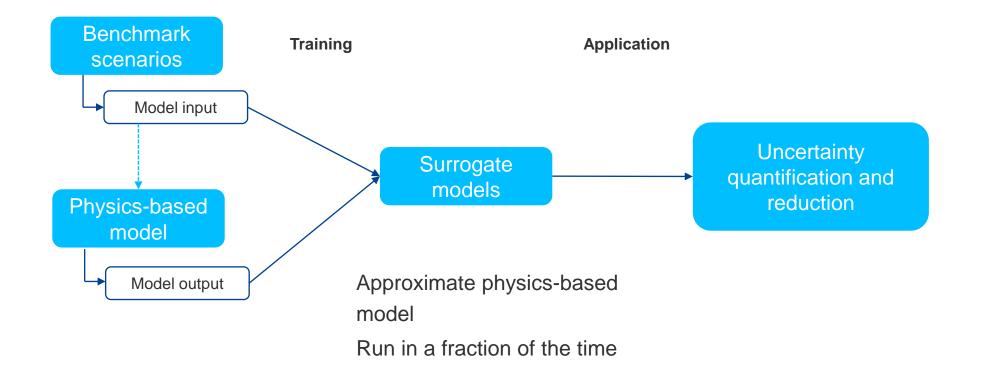
Surrogate model generation using Gaussian process regression and Bayesian active learning

Maria Fernanda Morales Oreamuno, M.Sc.

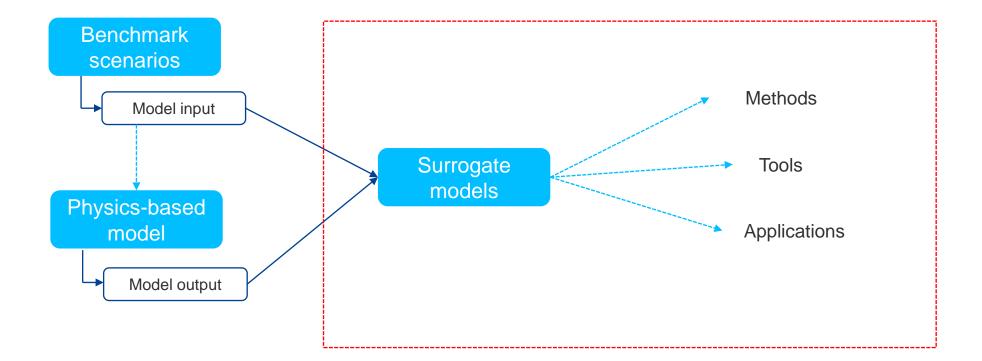
LS³



Review

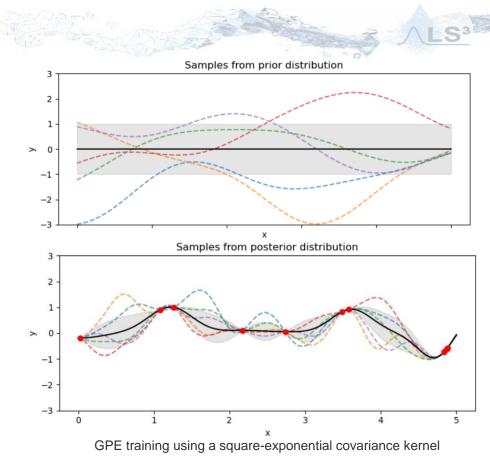


Review



Methodology

- Assumption: a given function f(x) resembles a realization of a Gaussian stochastic process, described by a¹
 - Mean (µ): assumed 0
 - Covariance (Σ): a given kernel
- Trained through input-output pairs, generated by the simulator



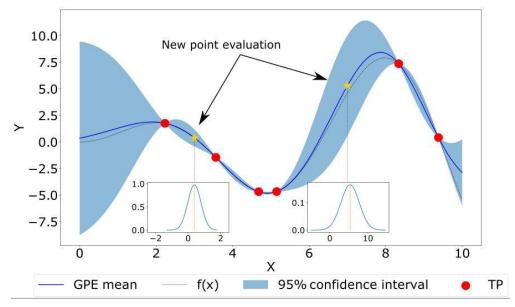
Source: https://scikit-learn.org/stable/modules/gaussian_process.html

¹Zhang, J., Li, W., Zeng, L., & Wu, L. (2016). An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems. *Water Resources Research*, *5*2(8), 5971-5984.

Methodology

- Trained through input-output pairs, generated by the simulator
- Predictions for all (future) parameter combinations are described by:
 - Mean
 - Variance

Surrogate prediction error



1D input – 1D output example using Gaussian process regression

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press.

Crevillen-Garcia, D., Wilkinson, R. D., Shah, A. A., & Power, H. (2017). Gaussian process modelling for uncertainty quantification in convectively-enhanced dissolution processes in porous media. *Advances in water resources*, *99*, 1-14.

University of Stuttgart

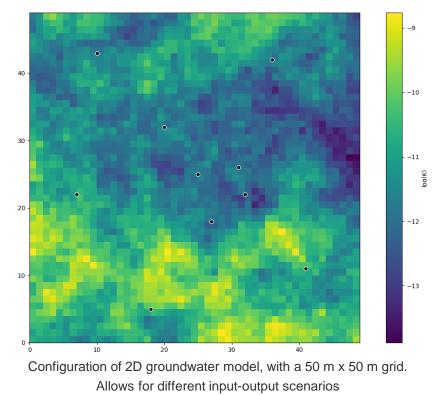
Maria.F. Morales Oreamuno

Challenges

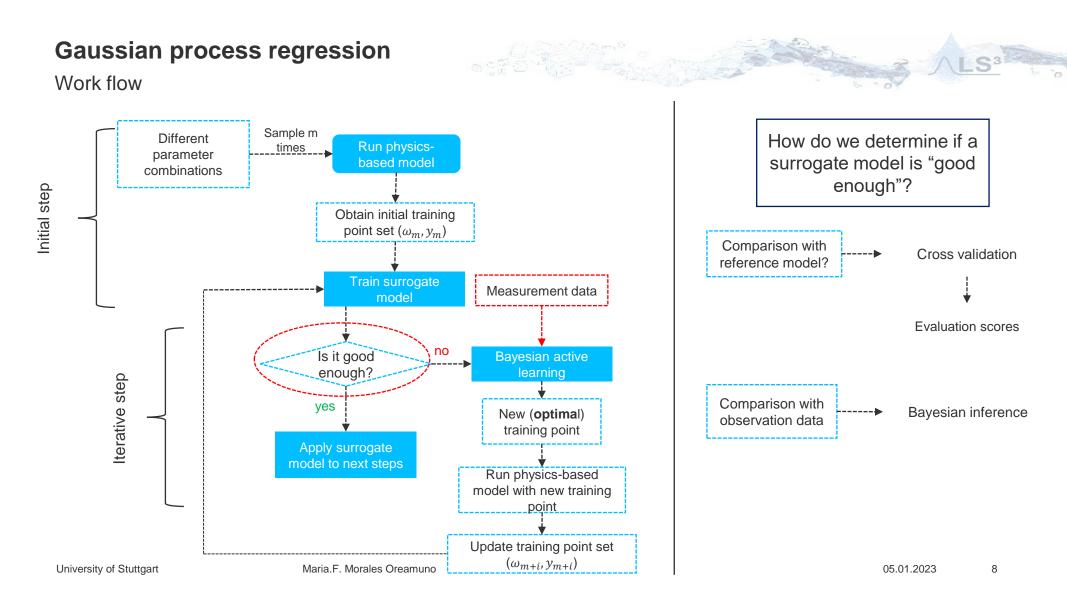
- High input dimensions:
 - Heterogeneity
 - Parameters for different processes

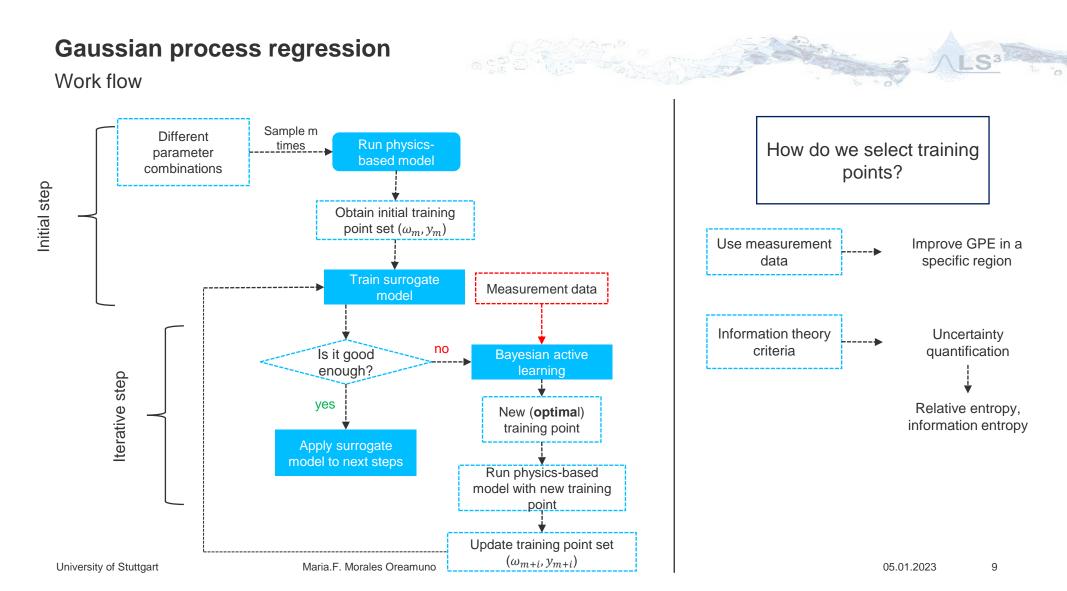
Needs large number of training points

- High output dimension
 - Train GPE for each cell and/or each time step
 High computational time



Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press.



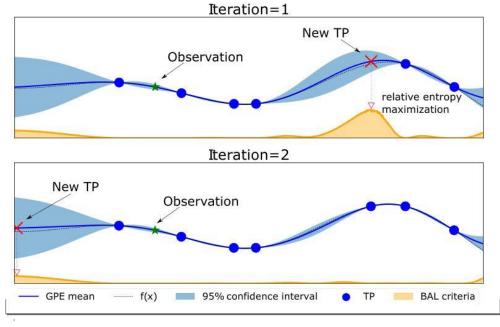


Bayesian Active Learning

- For each parameter set, one can get an output distribution
- We can sample from each output distribution
- Bayesian inference → obtain information from measurements

+

 Information theory: uncertainty associated with predictions



Information theory scores as training point selection criteria using Bayesian active learning

Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian³ active learning for the gaussian process emulator using information theory. Entropy, 22(8), 890.

Zhao, H., & Kowalski, J. (2022). Bayesian active learning for parameter calibration of landslide run-out models. Landslides, 1-13.

Tools

- Main coding language:
 - Python
- Gaussian process libraries:
 - Scikit Learn
 - GPyTorch
- Project collaboration:
 - GitHub
- Literature review
 - Zotero

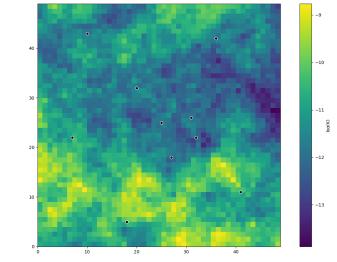
Applications and Outlook

- Develop methodologies to train the Gaussian process emulator(s) using Bayesian active learning
 - Convergence criteria
 - BAL selection criteria (information theory)
- Consider/reduce potentially high input and output dimensions

Step 2:

- Apply methodologies to geophysical models
- Implement geophysical inversion methods, model calibration

Step 1: test methods using a simple, fast model, to be able to compare GPE results with a reference model



scenarios

University of Stuttgart Germany

Thank you for your attention!

Maria Fernanda Morales Oreamuno

maria.morales@iws.uni-stuttgart.de

University of Stuttgart Stochastic Simulation and Safety Research for Hydrosystems (LS³) iws-Is3.uni-stuttgart.de

References

Crevillen-Garcia, D., Wilkinson, R. D., Shah, A. A., & Power, H. (2017). Gaussian process modelling for uncertainty quantification in convectively-enhanced dissolution processes in porous media. *Advances in water resources*, *99*, 1-14.

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., and Wilson, A. G. (2018). Gpytorch: Blackbox matrix-matrix gaussian process inference with GPU acceleration. In Advances in Neural Information Processing Systems. <u>https://gpytorch.ai/</u>

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Van-derplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830. <u>https://scikit-learn.org/stable/modules/gaussian_process.html</u>

References

Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian³ active learning for the gaussian process emulator using information theory. *Entropy*, *22*(8), 890.

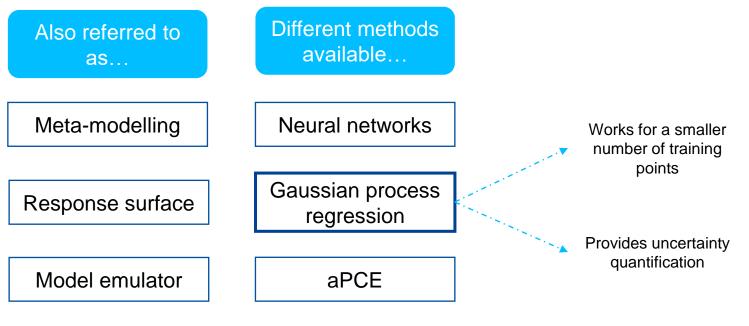
Williams, C. K., & Rasmussen, C. E. (2006). *Gaussian processes for machine learning* (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press.

Zhao, H., & Kowalski, J. (2022). Bayesian active learning for parameter calibration of landslide run-out models. *Landslides*, 1-13.

Overview

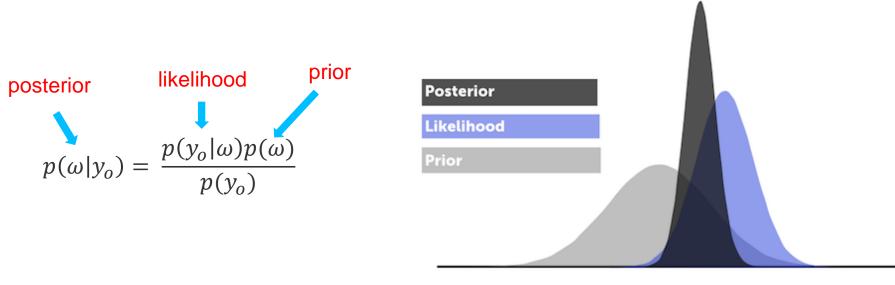
Surrogate modelling

• Main goal: overcome computational time constraints for expensive models



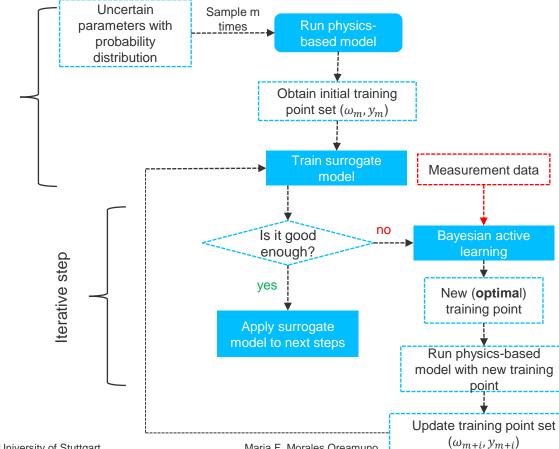
Bayesian inference

• Bayes' theorem: update a prior state of knowledge to a posterior based on observation data



Bayesian inference: updating a prior to a posterior using observation data, through a likelihood function

Source: Oladyshkin (2022), IWS lecture, University of Stuttgart



Initial step

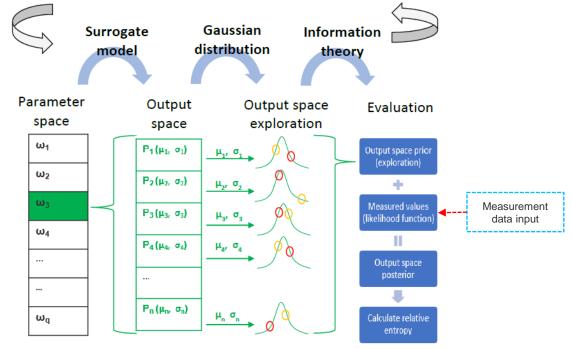
University of Stuttgart

Maria.F. Morales Oreamuno

05.01.2023 18

Bayesian active learning

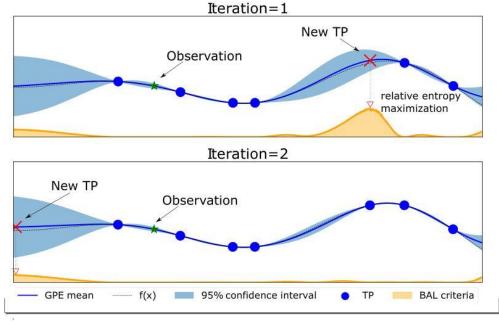
- (Bayesian) Active Learning allows to select training points located in regions of high posterior likelihood:
 - to improve the surrogate model prediction
 - reduce the number of total training points needed.
- For each iteration of the surrogate training, one selects the parameter set ω_i which presents the highest gain in information as the next training point



Source: Acuna Espinoza (2021)

Bayesian Active Learning

- Main goals:
 - Reduce the number of training points
 - Uses observation data
 - Improve GPE in a specific region
- Criteria
 - Information theory scores
 - · Chooses points with high uncertainty



Information theory scores as training point selection criteria using Bayesian active learning

Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian³ active learning for the gaussian process emulator using information theory. *Entropy*, 22(8), 890.

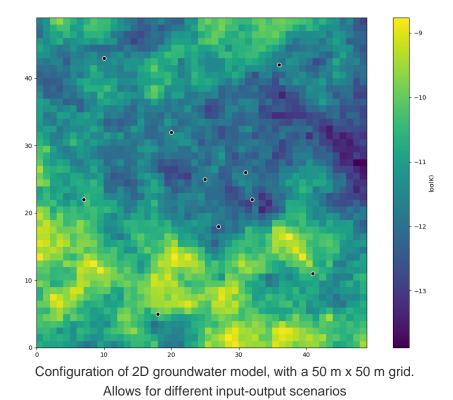
Zhao, H., & Kowalski, J. (2022). Bayesian active learning for parameter calibration of landslide run-out models. Landslides, 1-13.

University of Stuttgart

Application

Simple test case

- 2D flow and transport groundwater model
 - Self-made finite-element solver in MATLAB
 - < 1 s run time
- Allows for different input parameters
 - Heterogeneity
 - Transport parameters
 - Boundary conditions
- High output dimension scenario
 - 1 GPE for each output cell
- Future: test with a 1D geophysical model for a more case-specific example



Summary and outlook

- Develop methodologies to train Gaussian process emulators (GPE)
 - To reduce computational time and allow for uncertainty quantification and geophysical inversion
- Train GPEs using Bayesian active learning
 - Consider observations \rightarrow give additional information about true processes
 - Reduce number of (expensive) runs of physics-based model
- Test/apply methodologies on simple (fast) test cases to compare GPE with reference model
 Outlook
- Apply methodologies to (more expensive) geophysical models
- Use GPEs for Bayesian inversion and model calibration
- Apply GPEs for optimal experimental design and smart monitoring strategies