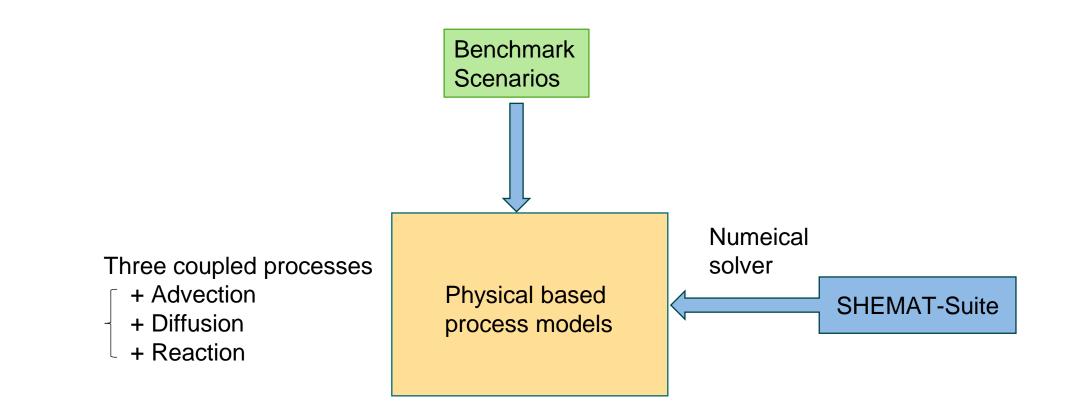
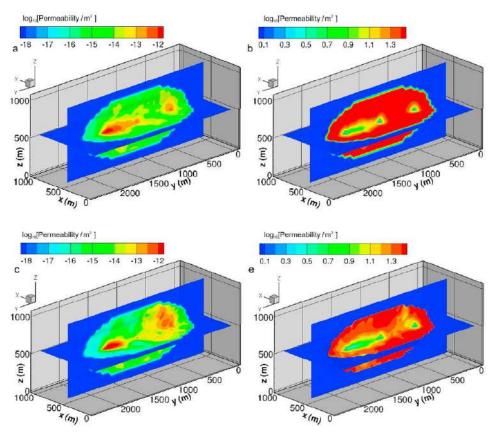
Modelling of radionuclide transport process using SHEMAT-Suite


1st URS PhD Workshop

Date: 09.09.2022 Chen Qian

Methods for Model-based Development in Computational Engineering, RWTH Aachen University, Aachen, Germany

2

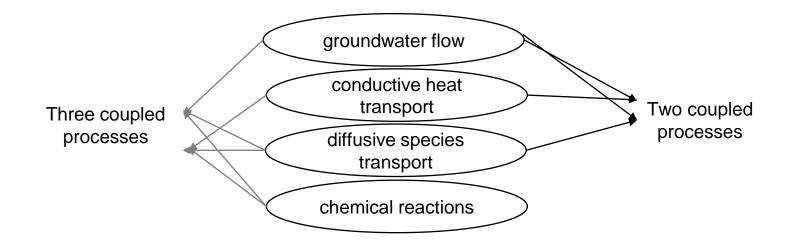

Open-source **SHEMAT-Suite** (Simulator for **HE**at and **MA**ss **T**ransport) is a numerical code for computing **flow**, **heat** and **species** transport equations in porous media. The code solves transient or steady-state, forward and inverse coupled problems in 1D, 2D, and 3D.

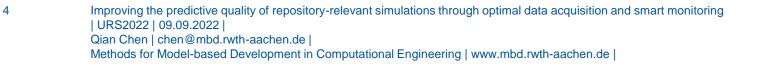
Governing Equations of SHEMAT-Suite:

- Groundwater flow
- Heat transport

3

• Species transport

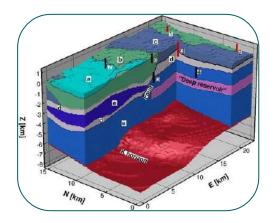

(Vogt, C., et al)

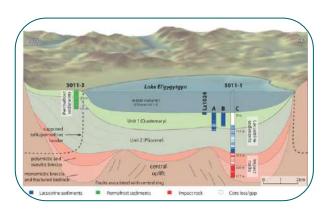

Introduction

SHEMAT-Suite can solve the following classes of problems:

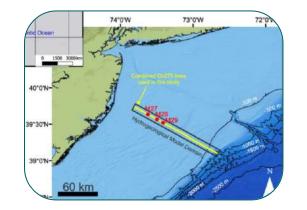
SHEMAT-Suite uses a finite difference method to solve the partial differential equations numerically.

- Upwind Differencing Scheme
- Il'in Flux Blending Scheme
- Smolarkiewicz Advection Scheme





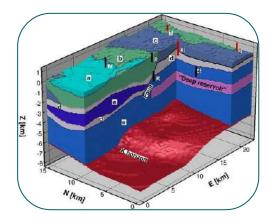
Important Application Areas


Four important application areas of SHEMAT-Suite:

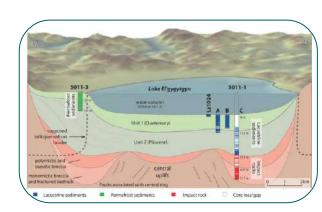

• Geothermics:

Paleoclimate:

• Hydrogeology:

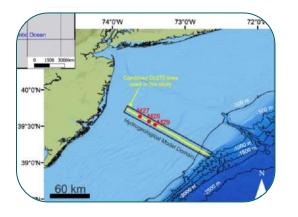


 Inverse method development:

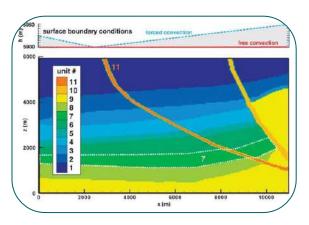

Important Application Areas

Four important application areas of SHEMAT-Suite:

Geothermics:


- Borehole heat exchanger and temperature sensor simulations
- Deep geothermal reservoirs simulation

- Paleoclimate:
- Property module for ice for simulating freezing and thawing processes in porous media.


≻ ...

٠

Hydrogeology:

- Simulating the submarine groundwater discharge
- Ensemble-based and rely on high-performance computing for the modern aquifer flow simulations

- Inverse method development:
- Three-dimensional inverse parameter estimation
- Uncertainty quantification of expected geothermal energy usage
- optimal experimental design

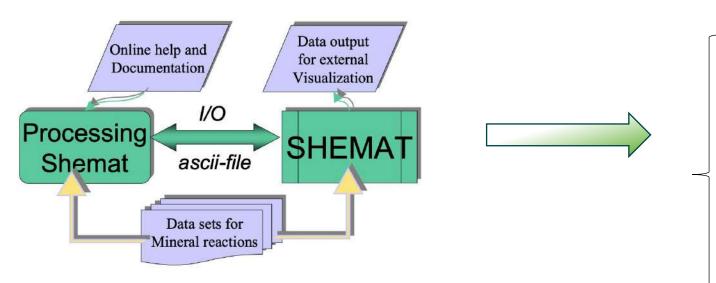
(Ebigbo, Anozie, et al.)

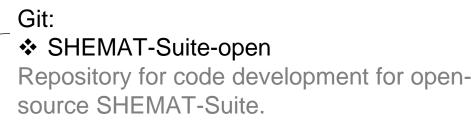
6

(D. Mottaghy et al.)

(Thomas, A. T., et al.)

(Rath, V., A. Wolf, and H. M. Bücker.)


Improving the predictive quality of repository-relevant simulations through optimal data acquisition and smart monitoring | URS2022 | 09.09.2022 | Qian Chen | chen@mbd.rwth-aachen.de | Methods for Model-based Development in Computational Engineering | www.mbd.rwth-aachen.de |


• SHEMAT (Fortran 77)

7

General structure of the simulation package SHEMAT / Processing SHEMAT (Clauser 2003)

• SHEMAT-Suite (Fortran 95)

SHEMAT-Suite_Models-open

Testmodels for SHEMAT-Suite.

 SHEMAT-Suite_Scripts-open
 Scripts for Pre-/Postprocessing of SHEMAT-Suite.

Overview of current code version

- Current code version: v9.00
- Permanent link to code/repository: https://github.com/ElsevierSoftwareX/SOFTX_2020_135
- Operating environment: Linux OS
- > Open source environment

8

Repository for code development for SHEMAT-Suite. SHEMAT-Suite simulates flow, heat and species transport in porous media, as well as geochemical rock reactions, for applications regarding geothermal energy.

Sub	grou	ps and projects Shared projects Archived projects	Search by na	Name, descending ~
0	S	SHEMAT-Suite_Scripts-open Scripts for Pre-/Postprocessing of SHEMAT-Suite	★ 0	5 months ago
0	S	SHEMAT-Suite-open BRepository for code development for open-source SHEMAT-Suite. SHEMAT-Suit	★ 0	2 months ago
0	S	SHEMAT-Suite_Models-open Testmodels for SHEMAT-Suite.	★ 0	1 year ago

SHEMAT-Suite _Models-open

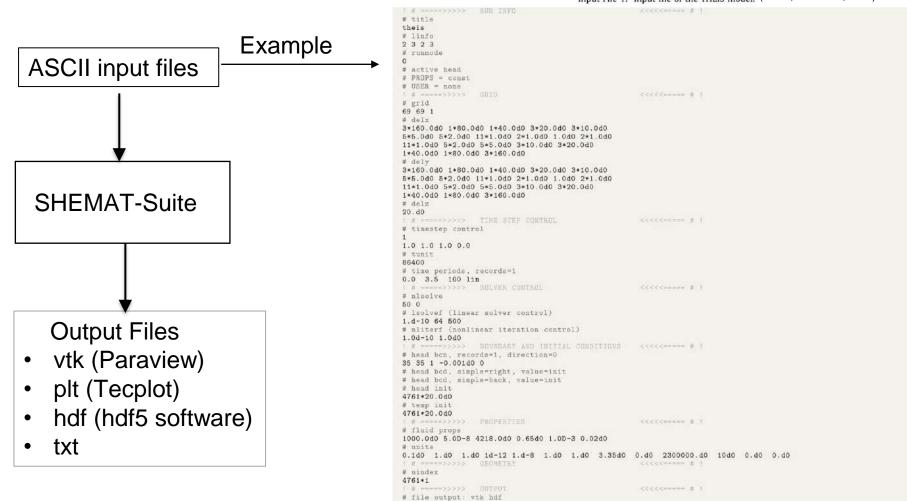
S SHEMAT-Suite_Models-open Project ID: 41816

--- 34 Commits 💡 1 Branch 🖉 0 Tags 🗔 310.4 MB Project Storage

Testmodels for SHEMAT-Suite.

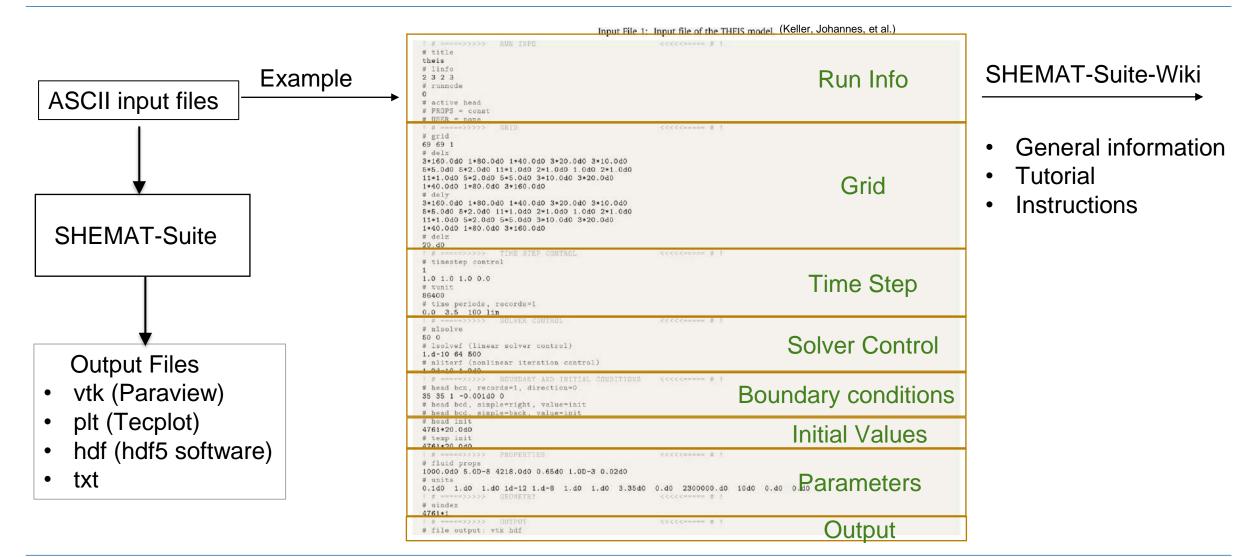
9

Benchmarks for SHEMAT-Suite	Source
<pre>fw_basc_ElderProblem</pre>	Elder, J., Numerical experiments with free convection in a vertical slot, Journal of Fluid Mechanics, 24(4), 823–843 (1966).
fw_basc_HenryProblem	Thomas, A. T., Reiche, S., Riedel, M., & Clauser, C., The fate of submarine fresh groundwater reservoirs at the new jersey shelf, usa, Hydrogeology Journal, 27(7), 2673–2694 (2019). http://dx.doi.org/10.1007/s10040-019-01997-y
<pre>fw_const_DP</pre>	Domenico, P. A., & Palciauskas, V. V., Theoretical analysis of forced convective heat transfer in regional ground-water flow, Geological Society of America Bulletin, 84(12), 3803 (1973). http://dx.doi.org/10.1130/0016- 7606(1973)84<3803:taofch>2.0.co;2
<pre>fw_const_HeatConduction1D</pre>	simple analytical solution
<pre>fw_const_Peclet</pre>	simple analytical solution


https://git.rwth-aachen.de/SHEMAT-Suite/shemat-suite_models-open

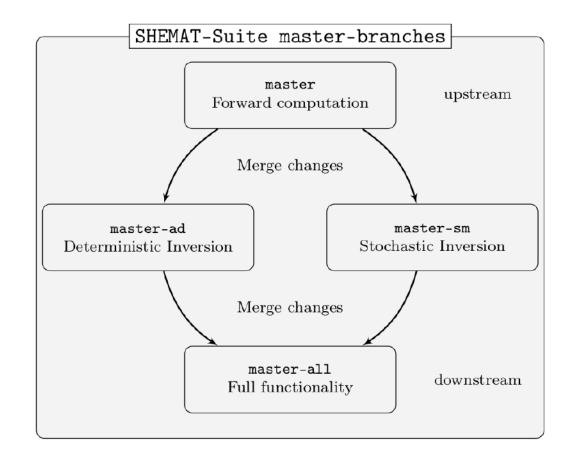
Input and Output File

10


Input File 1: Input file of the THEIS model. (Keller, Johannes, et al.)

Improving the predictive quality of repository-relevant simulations through optimal data acquisition and smart monitoring | URS2022 | 09.09.2022 | Qian Chen | chen@mbd.rwth-aachen.de | Methods for Model-based Development in Computational Engineering | www.mbd.rwth-aachen.de |

Input and Output File



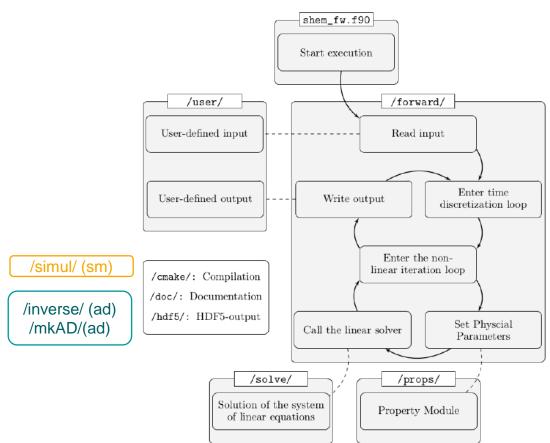
Software functionalities

The source code of SHEMAT-Suite is functioned in two levels: **1. The bramch bramch 2**. The directory level.

- A **forward-mode** (*master*) for pure forward computation.
- An **automatic-differentiation-mode** (*master-ad*) for deterministic inverse computation.
- A **stochastic-mode** (*master-sm*) for geostatistical simulation and parameter estimation.
- Master-all compiling in all three modes.

12

(Keller, Johannes, et al.)



Software architecture

The source code of SHEMAT-Suite is functioned in two levels: 1. The branch level

The master branch contains the following directories:

- /forward/: forward computation
- /solve/: the solution of systems of linear equations.
- /props/: dynamic behavior and coupling of fluid and rock properties.
- /user/: user-defined input and out subroutines, a user-defined Fortran-module.
- /hdf5/: interfaces with the HDF5 library for input and output.
- /cmake/: compilation utilities using CMake tools.
- /doc/: input for generating the Doxygen documentation.

2. The directory level.

(Keller, Johannes, et al.)

Compatible Python-based implementations:

pySHEMAT: Python wrapper for **SHEMAT** input and output files. (<u>https://github.com/flohorovicic/pyshemat</u>)

SHEMAT-Suite_Scripts-open

Pre-processing:

convert_to_hdf5.py : can be used to convert some of the SHEMAT-Suite input arrays into hdf5-files. The user input for SHEMAT-Suite is provided in an ASCII-file. For reducing the reading time of larger input files, SHEMAT-Suite provides the option to readHDF5 input instead.

Post-processing:

pyshemkf: Python environment for handling SHEMAT-Suite output of EnKF simulations pyshemkf can generate graphs and 2D-figures of variables and parameters provided by typical output of SHEMAT-Suite.

(https://github.com/jjokella/pyshemkf)

Table 1 (Keller, Johannes, et al.)

15

Newly implemented functionality	Key reference
Inverse parameter estimation based on automatic differentiation	Rath et al. 2006 [11]
Latent heat effects due to freezing and melting	Mottaghy and Rath, 2006 [34]
Monte Carlo techniques for uncertainty quantification and reduction	Vogt et al. 2010 [50]
Borehole heat exchanger module ^b	Mottaghy and Dijkshoorn, 2012 [51]
Shared-memory parallelization	Wolf, 2011 [7]
Data assimilation based on the ensemble Kalman Filter	Vogt et al. 2012 [31]
Multi-phase flow module using automatic differentiation ^a	Büsing et al. 2014 [27]
Distributed-memory parallelization ^a	Rostami and Bücker, 2014 [38]
Heat transfer model for plane thermo-active geotechnical systems ^a	Kürten et al. 2014 [52,53]
Anisotropic flow module using the full permeability tensor ^a	Chen et al. 2016 [54]
Supercritical water/steam module using automatic differentiation ^a	Büsing et al. 2016 [29]
Optimal borehole positioning with respect to reservoir characterization via optimal experimental design ^c	Seidler et al. 2016 [41]
Halite precipitation model in porous sedimentary rock adjacent to salt diapirs ^a	Li et al. 2017 [55]
Efficient two-phase flow in heterogeneous porous media using exact Jacobians ^a	Büsing, 2020 [28]

^aFunctionalities not available in the open-source package.

^bSimplified functionality available in the open-source package.

^cSHEMAT-Suite functionality available open-source, additional software required.

16

- Computing flow, heat and species transport equations in porous media.
- Git-branches for software development.
- Automatic differentiation (AD) for calculating exact Jacobian in inversions.
- Large variety of application fields and online test example.
- High performance computing capacities.
- Deterministic and stochastic inversion.

(Keller, Johannes, et al.)

References

1. Clauser, C., Bartels, J., Cheng, L., Ranalli, G., Chiang, W., & Pape, H. (2003). SHEMAT and Processing SHEMAT–Numerical simulation of reactive flow in hot aquifers.

2. Vogt, C., Marquart, G., Kosack, C., Wolf, A., & Clauser, C. (2012). Estimating the permeability distribution and its uncertainty at the EGS demonstration reservoir Soultz-sous-Forêts using the ensemble Kalman filter. Water Resources Research, 48(8).

3. Ebigbo, A., Niederau, J., Marquart, G., Dini, I., Thorwart, M., Rabbel, W., ... & Clauser, C. (2016). Influence of depth, temperature, and structure of a crustal heat source on the geothermal reservoirs of Tuscany: numerical modelling and sensitivity study. Geothermal Energy, 4(1), 1-29.

4. Mottaghy, D., Schwamborn, G., & Rath, V. (2013). Past climate changes and permafrost depth at the Lake El'gygytgyn site: implications from data and thermal modeling. Climate of the Past, 9(1), 119-133.

5. Thomas, A. T., Reiche, S., Riedel, M., & Clauser, C. (2019). The fate of submarine fresh groundwater reservoirs at the New Jersey shelf, USA. Hydrogeology Journal, 27(7), 2673-2694.

6.Rath, V., Wolf, A., & Bücker, H. M. (2006). Joint three-dimensional inversion of coupled groundwater flow and heat transfer based on automatic differentiation: sensitivity calculation, verification, and synthetic examples. Geophysical Journal International, 167(1), 453-466.

7. Keller, J., Rath, V., Bruckmann, J., Mottaghy, D., Clauser, C., Wolf, A., ... & Klitzsch, N. (2020). SHEMAT-Suite: An open-source code for simulating flow, heat and species transport in porous media. *SoftwareX*, *12*, 100533.

8. Wellmann, J. F., Croucher, A., & Regenauer-Lieb, K. (2012). Python scripting libraries for subsurface fluid and heat flow simulations with TOUGH2 and SHEMAT. *Computers & Geosciences*, *43*, 197-206.

Thank you for your attention

