

<u>Risk-based Assessment of Salt Domes as</u> Disposal Sites for <u>N</u>uclear Waste (RADON)

Andrea Perin

Institute for Risk and Reliability Leibniz Universität Hannover

Table of Contents

- Enhanced Bayesian Network (EBN) General Concepts
 - Callbacks
 - EBN Properties
- EBN Implementation
- Thermal Hydraulic Components (THC) Model PoV
- Surrogate Modeling
 - Artificial Neural Network (ANN)
- Next Step

EBN Presentation

EBN Presentation – Callbacks

Structural Reliability Methods

- System's state can be:
 - 'safe' with a given set of parameters
 - 'not safe' with a slightly changed set of parameters
- When one (or more) parameter/s of the system are affected by uncertainties:
 - *Parameter/s* becomes *random* variable/s 'X'
 - System state became **dependent** on this random variable/s

Bayesian Networks

- For evaluating the reliability of a system in **different scenarios**
- General features:
 - > multidisciplinary-usability
 - Human-readbility
 - Compact-representation

- Specific featurse:
 - Bayesian Update of marginal probabilities (once new data 'E' becames available)
 - > what-if analysis
 - propagation of the information on the direction of interest

EBN Presentation – EBN properties

System pdf:

The problem of the evaluation of discrete probabilities (or pdf) of

each node with at least one continuous parent has the same

mathematical form of a System Reliability Problem!

eBNs (BNs Enhanced with SRM) are a tool able to:

- Implement Discrete and Continuous rvs •
- With arbitrary distributions •
- And any dependency •

02.11.2023

Andrea Perin & Jonas Suilmann

EBN Implementation

EBN Implementation

WIP!

> Developing a general purposes library for exploiting eBN in any application

> Under development in Julia

Based on UQ.jl Library (SRM part)

EBN Implementation

Implemented so far

CPDs

- Structure to define the Conditional Probability Distribution (Discrete or Continuous) as:
 - 1) RootCPD
 - 2) NamedCategoricalCPD
 - 3) FunctionalCPD

> Nodes

- Structure to define the nodes of the eBN (Discrete or Continuous) as:
 - 1) RootNODE
 - 2) StdNODE
 - 3) FunctionalNODE

BayesianNetworks

- Structure to define the Bayesian Network as Direct Acyclic Graph and perform the evaluation of each JointCPD given any evidence, as:
 - 1) StdBayesianNetwork
 - 2) EnhancedBayesianNetwork (WIP)

THC Model PoV

TH Model PoV

Case of Study

> The Salt Dome Problem:

- Transport of solute (radioactive contaminant) due to groundwater flow within a salt dome (salt dissolution affects flow velocity and vice-versa)
- FE model (smoker.exe) is used to obtain matrices of head, temperature and concentration values at different time.

Risk Assessment

- Identification of the scenarios the affects FE model's inputs, and evaluation of the consequent outputs to determine if the final state is safe or not
- In order to distinguish between safe/not-safe salt dome's final state the FE output (matrices) needs to be
 - Post-Processesed to obtain single values
 - Evaluated through a Performance Function to obtain a boolean output

TH Model PoV

Model's output

Post-Processing + Performance Function

TH Model PoV

	Οι	Output	
	Safe	Not Safe	
y1 _a y2	a A	1-A	
y1 _a y2	b B	1-B	
y1b y2	a C	1-C	
y1b y2	b D	1-D	

- This eBN general structure requires to define (for each discrete parents combination):
 - Whether or not the Model's simulation needs to be run
 - All discrete inputs
 - A post processing function
 - A performance function
- Continuous random variable/s are not combinationspecific and determined uniquely by the continuous node 'X1'.
- Such a structure, with respect to the one where where each node corresponds to a model inputs is:
 - Less automatize
 - More general

Surrogate Model

Surrogate Model - ANN

FE Models are too computational expensive in a framework where are required to be run several times in different scenarios, especially when low probability of failure have to be established

With a 24h simulation we obtain 1 output sample of 10⁴ dimension!

for a specific time-spatial coordinate (x;z;t)

Next Step

eBN Library	RADON Project
 Finalise 'EnhancedBayesianNetwork' structures. We are actually working on <i>node-elimination</i> algorithm Identification and implementation of test cases (e.g. <i>Straub 2019</i> – <i>Bayesian Network Enhanced with Structural Reliability Methods: Metodology</i>) 	 Identification of the events (eBN nodes) and their influences on THC model's inputs (e.g. NEA report - Updating the NEA International FEP List An Integration Group for the Safety Case (IGSC) Technical Note) Implementation of Salt Dome case Developing Surrogate Model for TH Model (ANN or PCE or GP)

Possible Upgrade to eBN

• Introduction of 'Imprecise Probability' through Interval Variables => Enhanced 'Credal Networks'