

Uncertainties in THM-coupled integrity calculations

Feliks Kiszkurno^{1,2}, Aqeel Afzal Chaudhry², Chao Zhang³

¹ Helmholtz-Zentrum für Umweltforschung GmbH – UFZ, Leipzig
 ² Institut für Geotechnik, Technische Universität Bergakademie Freiberg
 ³ Fakultät für Mathematik, Technische Universität Chemnitz

Visit:

https://www.ufz.de/index.php?en=37481 https://tu-freiberg.de/bodenmechanik https://www.tu-chemnitz.de/mathematik/numa/ https://urs.ifgt.tu-freiberg.de

3rd URS PhDs Workshop | Leipzig | Germany | 23-24 Oct., 2023

OUTLINE

Parameter uncertainity in THM process - Feliks

Inhomogeneity and anisotropy in THM simulations – Aqeel

Additional slides (kleme: C++ library for generating random fields – Charlie)

F. Kiszkurno | A.A. Chaudhry | C. Zhang | 3rd URS PhDs Workshop | 23-24 Oct., 2023

Parameter uncertainity in THM process – Feliks

INTRODUCTION

Goals:

- Investigate if combining experimental data with modelling allows to gain insight to the effect of the thermo-osmosis process has impact on the pressurization.
- If an impact can be detected, quantify how big it is -> parameter estimation.

Uncertainities

- Parameter uncertainity
- Measurement uncertainity
- Inhomogenity of clay
- Model uncertainity

What is thermo-osmosis?

TO is defined as follows:

"Thermo-osmosis may be defined as the process of diffusion of a fluid through a membrane under the influence of a temperature gradient" (Denbigh et al. 1952), (Gonçalvès et al. 2018)

- Fluid flow driven by a temperature gradient
- Unit: Pa * m * K⁻¹

Parameter uncertainity in THM process – Feliks

INTRODUCTION - ATLAS EXPERIMENT

Geometry of experiment

- 2D, axisymmetric
- 100m x 119m
- Observation point at: (1.515, 14.0)

Numerical setup

- Processes:
 - Thermo Hydro Mechanical (THM)
 - Thermo Hydro Mechanical with thermo osmosis (THM+TO)
- Isotropy is assumed

Goals

- Match pressure and temperature observations
- Test if TO improves match between observed data and simulation

Fig. 1: Layout of ATLAS Experiment. Figure from: François et al. 2009

UNCERTAINTY QUANTIFICATION WORKFLOW

- Proxy building: parameter space was explored using numerical simulations based on Latin Hypercube Sampling (LHS) and 2-level-full-factorial experiment design
- Monte Carlo combined with proxies were used to explore parameter space with high saturation

Fig. 2: Overview of the workflow used in this study. J. Buchwald et al. 2020

HYPOTHESIS TESTING

Goals:

- Test if TO has more impact than just being an arbitrary tweaking parameter
- Test if numerical method allow to select correct physical process
- Investigate how well the correct parameters can be recovered

Tab. 1: Table presenting an overview of tested process hypothesis. Each hypothesis is combination of a selection of a physical process and how thermo-osmosis is added to process. **Bold hypothesis** is the correct hypothesis in first experiment with no thermo-osmosis in reference data, *hypothesis in italics* is the correct hypothesis in the second experiment in which thermo-osmosis was included in the reference data.

TO status Process	no TO	with TO	with TO active
THM	THM	THM+TO	THM+TO_active
TRuni	TRuni	TRuni+TO	TRuni+TO_active
TRhyd	TRhyd	TRhyd+TO	TRhyd+TO_active

SIMULATION SETUP

Tested parameter ranges

Parameter name	Unit	Reference	Min	Max
Intrinsic permeability (k)	m^2	2.5e - 19	1e - 19	9e - 19
TO coefficient (narrow) (k_T)	$Pa * m * K^{-1}$	3e - 12	1e - 12	5e - 12
TO coefficient (wide) (k_T)	$Pa * m * K^{-1}$	3e - 12	1e - 14	1e - 11
Young's modulus (E)	Pa	3.5e8	2e8	8e8

Error metrics - History matching error:

$$e_{HM} = \sqrt{\sum_{1}^{n} \frac{(d_{obs} - d_{sim})^2}{n}}$$
 (1)

Parameters and initial conditions after: (Tamizdoust et al. 2021).

IMPACT OF THE VALUE OF K_T - TO COEFFICIENT

DISTRIBUTION OF ERROR VALUES - NO TO IN REFERENCE

Impact of kT value on ehm error

F. Kiszkurno | A.A. Chaudhry | C. Zhang | 3rd URS PhDs Workshop | 23-24 Oct., 2023

DISTRIBUTION OF ERROR VALUES - WITH TO IN REFERENCE

ESTIMATED PARAMETERS

DISTRIBUTION OF PARAMETER VALUES

Fig. 3: Distribution of E values recovered with different processes with TO_active. No TO in the reference data.

Fig. 4: Distribution of E values recovered with different processes with TO_active . With TO in the reference data.

DISTRIBUTION OF PARAMETER VALUES

Fig. 5: Distribution of kT recovered with different processes with TO_active. No TO in the reference data.

Impact of thermo-osmosis on distribution of kT parameter values

Fig. 6: Distribution of kT recovered with different processes with TO_active. With TO in the reference data.

SUMMARY AND OUTLOOK

Summary and conclusions:

- Increasing the complexity of the model doesn't necessarily improve the result
- The UQ tools can be used to discriminate between processes, select parameter values and quantify uncertainty

Outlook:

- Add information from multiple observations points
- Repeat the study presented in this presentation using data from real waste storage experiment
- Verify the significance of difference between the recovered distributions of parameter values with statistical methods

Fig. 7: ATLAS experiment - sensor positions (Chen et al. 2011

Parameter uncertainity in THM process - Feliks

COMICAL RELIEF AT THE END OF PRESENTATION :)

FLASHBACK – EXPECTED PLAN FOR MEQUR

Starting point -> FE experiment Planned study steps

- Selection of input parameters for SA/UQ
 - -> based on knowledge from previous studies like Buchwald et al. 2020; Chaudhry et al. 2021
- Survey of available data sources (BGR)
 - -> parameter heterogeneities, (auto)correlation lengths
- Simplified 2D mesh/model based on FE experiment
- Use of as realistic data as possible from the original FE experiment
- Initial study based on 1 parameter (hydraulic conductivity <-> intrinsic permeability)

What's new?

- \blacksquare Extension to other parameters like E , λ , α_s , c_p , ϕ
- Departure from rectangular to circular geometry
- Extension of plots to two more measures
- Spatial percentile plots

Governing equations - TRM (Pitz et al. 2023)

Heat balance:

$$\begin{split} &(\rho c_p)_{\text{eff}} \frac{\mathrm{d}T}{\mathrm{d}t} + L_0 \frac{\mathrm{d}\theta_{\text{vap}}}{\mathrm{d}t} - \operatorname{div}\left(\lambda_{\text{eff}} \operatorname{grad} T\right) \\ &+ \operatorname{div}\left(\frac{L_0 J_{\text{G}}^{\text{W}}}{\rho_{\text{GR}}^{\text{W}}}\right) + \operatorname{grad}T \cdot \left(c_{p\text{L}} \boldsymbol{A}_{\text{L}} + c_{p,\text{vap}} J_{\text{G}}^{\text{W}}\right) = Q_T \end{split}$$

Mass balance:

$$\begin{split} \rho_{\mathsf{LR}}S_{\mathsf{L}}(\alpha_{\mathsf{B}}-\phi)\beta_{p,\mathsf{SR}}\frac{dp_{\mathsf{LR}}}{dt} &-\rho_{\mathsf{LR}}S_{\mathsf{L}}(\alpha_{\mathsf{B}}-\phi)\operatorname{tr}(\boldsymbol{\alpha}_{T,\mathsf{SR}})\frac{dT}{dt} \\ &+\phi\left((1-S_{\mathsf{L}})\frac{d\rho_{\mathsf{CR}}^{\mathsf{W}}}{dt}+S_{\mathsf{L}}\frac{d\rho_{\mathsf{LR}}}{dt}\right) + \left(\rho_{\mathsf{LR}}-\rho_{\mathsf{CR}}^{\mathsf{W}}\right)\left[\phi+p_{\mathsf{LR}}S_{\mathsf{L}}(\alpha_{\mathsf{B}}-\phi)\right]\frac{dS_{\mathsf{L}}}{dt} \\ &+\rho_{\mathsf{LR}}S_{\mathsf{L}}\alpha_{\mathsf{B}}\operatorname{div}\left(\frac{d\mathbf{u}_{\mathsf{S}}}{dt}\right) + \operatorname{div}\left(\boldsymbol{A}_{\mathsf{L}}^{\mathsf{W}}+\boldsymbol{J}_{\mathsf{G}}^{\mathsf{W}}\right) = Q_{H} \end{split}$$

Momentum balance:

$$\operatorname{div}\left(\boldsymbol{\sigma}^{\operatorname{eff}} - \alpha_{\mathsf{B}}\chi(S_{\mathsf{L}})p_{\mathsf{LR}}\,\mathbf{I}\right) + \rho\mathbf{g} = \mathbf{0}$$

with

$$\dot{\sigma}^{\text{eff}} = \mathcal{C} : (\dot{\epsilon} - \dot{\epsilon}_{\text{pl}} - \dot{\epsilon}_{\text{th}} - \dot{\epsilon}_{\text{sw}})$$

Model setup and specifics

- Simplified 2D mesh: r = 50 m
 -> host rock (Opalinus clay)
- Circular heat source of $r = 1.5 \,\mathrm{m}$ -> emplaced waste cell
- Aninsotropic -> Transverse isotropy
 -> parallel and perpendicular to bedding plane
- Heterogeneous input parameters
 Random Heterogeneous Field Generator Code
 TU Chemnitz
 - -> IU Chemnitz
- Uncertainty quantification using numerical modeling
 > TRM -> OpenGeoSys
- Comparison of results with homogeneous, isotropic models

Initial conditions: $T_0 = 15 \,^{\circ}\text{C}, p_0 = 2 \,\text{MPa}, u_{\text{S0}} = 0$

Boundary conditions:

- Q_T (Neumann) at tunnel boundary
- $\blacksquare p = 0$ at tunnel boundary
- Normal $u_{\rm S}=0$ on outer boundary

CASE STUDIES

- -> Let f be the parameter in question -> f in this study -> λ , k, E
- $-> f_{\perp} = a_f f_{\parallel}, \quad$ where a_f is a scaling factor
 - Homogeneous, isotropic
 - $\rightarrow f_x = f_y = f_{\parallel}$
 - Homogeneous, anisotropic
 - $-> f_x = f_{\parallel}, \quad f_y = f_{\perp}$
 - Heterogeneous, statistically isotropic, hydraulically isotropic -> $f_x({\rm RF})=f_y({\rm RF})=f_{||}$
 - Heterogeneous, statistically isotropic, hydraulically anisotropic -> $f_x(\text{RF}) = f_{\parallel}, \quad f_y(\text{RF}) = f_{\perp}$

Work in progress

- Heterogeneous, statistically anisotropic, hydraulically isotropic $-> f_x(\mathsf{RF}_x) = f_{\parallel}, \quad f_u(\mathsf{RF}_u) = f_{\parallel}$
- Heterogeneous, statistically anisotropic, hydraulically anisotropic -> $f_x(RF_x) = f_{\parallel}$, $f_y(RF_y) = f_{\perp}$

Basic concept of the study

Example of one random realisation

$$- > \Delta q = \sqrt{\frac{3}{2}\sigma'_{\rm d}:\sigma'_{\rm d}} \qquad \Delta p' = -\frac{1}{3}\sigma'_{ii}$$

Homogeneous, isotropic (reference) case

$\underset{\substack{k \in \mathcal{K}^{0,0}}{\overset{k \in \mathcal{$

Homogeneous, anisotropic case

Heterogeneous, isotropic (single case)

Heterogeneous, anisotropic (single case)

Diff. between hom. iso and mean of het. isotropic (needed?)

Diff. between hom. aniso and mean of het. anisotropic (needed?)

Heterogeneous, isotropic (single case)

Heterogeneous, anisotropic (single case)

Heterogeneous, isotropic, percentiles at $r = 5 \,\mathrm{m}$

Heterogeneous, anisotropic, percentiles at $r = 5 \,\mathrm{m}$

Heterogeneous, anisotropic, percentiles at $\theta = 0^{\circ}$

F. Kiszkurno | A.A. Chaudhry | C. Zhang | 3rd URS PhDs Workshop | 23-24 Oct., 2023

Heterogeneous, anisotropic, percentiles at $\theta = 90^{\circ}$

F. Kiszkurno | A.A. Chaudhry | C. Zhang | 3rd URS PhDs Workshop | 23-24 Oct., 2023

Heterogeneous, isotropic, histogram at r = 5 m & $\theta = 0^{\circ}$

Outlook

- Statistical anisotropy
 - -> Different correlation lengths
- Random anisotropy
 - –> $f_\perp \neq a_f \; f_\parallel$?
- Different boundary conditions (?)
- Unsaturated settings (?) (complex)
- Better ways to interpret results?
- Additional runs for min, mean, max for all 3 inputs

ACKNOWLEDGEMENTS

We would like to acknowledge the support from Bundesgesellschaft für Endlagerung and express our gratitude for making this project possible.

BGE BUNDESGESELLSCHAFT FÜR ENDLAGERUNG

REFERENCES

- J Buchwald, AA Chaudhry, K Yoshioka, O Kolditz, S Attinger, and T Nagel. "DoE-based history matching for probabilistic uncertainty quantification of thermo-hydro-mechanical processes around heat sources in clay rocks". In: International Journal of Rock Mechanics and Mining Sciences 134 (2020), p. 104481.
- [2] J. Buchwald, A. A. Chaudhry, K. Yoshioka, O. Kolditz, S. Attinger, and T. Nagel. "DoE-based History Matching for Probabilistic Uncertainty Quantification of Thermo-Hydro-Mechanical Processes around Heat Sources in Clay Rocks". In: International Journal of Rock Mechanics and Mining Sciences 134 (September 2020). ISSN: 13651609. DOI: 10.1016/j.ijrmms.2020.104481.
- [3] Aqeel Afzal Chaudhry, Jörg Buchwald, and Thomas Nagel. "Local and global spatio-temporal sensitivity analysis of thermal consolidation around a point heat source". In: International Journal of Rock Mechanics and Mining Sciences 139 (2021), p. 104662. ISSN: 1365-1609.
- [4] G.J. Chen, X. Sillen, J. Verstricht, and X.L. Li. "ATLAS III in Situ Heating Test in Boom Clay: Field Data, Observation and Interpretation". In: Computers and Geotechnics 38.5 (2011), pp. 683–696. ISSN: 0266-352X. DOI: 10.1016/j.compgeo.2011.04.001. URL: https://www.sciencedirect.com/science/article/pii/S0266352X11000528.
- [5] K.G. Denbigh and Gertrude Raumann. "Ther Thermo-Osmosis of Gases through a Membrane I. Theoretical". In: Proceedings of Royal Society London 210 (1952), pp. 377–387. DOI: 10.1098. URL: https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1952.0007 (visited on 05/11/2023).

REFERENCES IIII

- [6] Bertrand François, Lyesse Laloui, and Clément Laurent. "Thermo-Hydro-Mechanical Simulation of ATLAS in Situ Large Scale Test in Boom Clay". In: Computers and Geotechnics 36.4 (May 1, 2009), pp. 626–640. ISSN: 0266-352X. DOI: 10.1016/j.compgeo.2008.09.004. URL: https://www.sciencedirect.com/science/article/pii/S0266352X08001109 (visited on 07/14/2022).
- [7] J. Gonçalvès, C. Ji Yu, J.-M. Matray, and J. Tremosa. "Analytical Expressions for Thermo-Osmotic Permeability of Clays". In: Geophysical Research Letters 45.2 (2018), pp. 691–698. DOI: 10.1002/2017GL075904. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL075904.
- [8] Michael Pitz, Sonja Kaiser, Norbert Grunwald, Vinay Kumar, Jörg Buchwald, Wenqing Wang, Dmitri Naumov, Aqeel Afzal Chaudhry, Jobst Maßmann, Jan Thiedau, et al. "Non-isothermal consolidation: A systematic evaluation of two implementations based on multiphase and richards equations". In: International Journal of Rock Mechanics and Mining Sciences 170 (2023), p. 105534.
- [9] Mohammadreza Mir Tamizdoust and Omid Ghasemi-Fare. "Assessment of Thermo-Osmosis Effect on Thermal Pressurization in Saturated Porous Media". In: IFCEE 2021. International Foundations Congress and Equipment Expo 2021. Dallas, Texas, 2021, pp. 99–108. DOI: 10.1061/9780784483428.011. eprint: https://ascelibrary.org/doi/pdf/10.1061/9780784483428.011. URL: liquid.

OUTLINE

kleme: a C++ library to efficiently generate random fields for large-scale problems

- review of Karhunen-Loève expansion (KLE)
- numerical difficulties and our solutions in implementing KLE
- demo code

KARHUNEN-LOÈVE EXPANSION (KLE)

$$\mathbf{Z}(\mathbf{x},\xi) \approx \sum_{i=1}^{M} \xi_i \sqrt{\lambda_i} \mathbf{f}_i(\mathbf{x})$$

 λ_i and \mathbf{f}_i are eigenvalues and eigenfunctions, and ξ_i are draws from $\mathcal{N}(0,1)$

KARHUNEN-LOÈVE EXPANSION (KLE)

$$\mathbf{Z}(\mathbf{x},\xi) \approx \sum_{i=1}^{M} \xi_i \sqrt{\lambda_i} \mathbf{f}_i(\mathbf{x})$$

 λ_i and \mathbf{f}_i are eigenvalues and eigenfunctions, and ξ_i are draws from $\mathcal{N}(0,1)$

KARHUNEN-LOÈVE EXPANSION (KLE)

$$\mathbf{Z}(\mathbf{x},\xi) \approx \sum_{i=1}^{M} \xi_i \sqrt{\lambda_i} \mathbf{f}_i(\mathbf{x})$$

 λ_i and \mathbf{f}_i are eigenvalues and eigenfunctions, and ξ_i are draws from $\mathcal{N}(0,1)$

A random field Z represented as a set of $\{\xi_i\}$: dimension reduction

CALCULATION OF λ_I AND F_I

 $\mathbf{C}\mathbf{f}_i = \lambda_i \mathbf{M}\mathbf{f}_i$

$$[\mathbf{C}]_{i,j} = \int_D \phi_j(\mathbf{x}) \int_D c(\mathbf{x}, \mathbf{y}) \phi_i(\mathbf{y}) \, d\mathbf{y} \, d\mathbf{x}$$

where ϕ is basis function and c is kernel/covariance function

CALCULATION OF λ_I AND F_I

 $\mathbf{C}\mathbf{f}_i = \lambda_i \mathbf{M}\mathbf{f}_i$

$$[\mathbf{C}]_{i,j} = \int_D \phi_j(\mathbf{x}) \int_D c(\mathbf{x}, \mathbf{y}) \phi_i(\mathbf{y}) \, d\mathbf{y} \, d\mathbf{x}$$

where ϕ is basis function and c is kernel/covariance function

Difficulties

- 1. $[\mathbf{C}]_{i,j}$ involves integration of singular functions, i.e., $c(|\mathbf{x}-\mathbf{y}|)$
- 2. C is dense, of size $DOFs \times DOFs$
 - storage is expensive
 - matrix-vector product is also expensive
- 3. eigen solver

Solutions

- 1. Schauter-Schwab quadrature from the BEM community to alleviate singularity
- 2. hierarchical matrices
- 3. Thick-restart Lanczos

SCHAUTER-SCHWAB QUADRATURE

SCHAUTER-SCHWAB QUADRATURE

HIERARCHICAL MATRICES

Low-rank approximation of far-field blocks

Fig. 10: Structure of a Hierarchical matrix

HIERARCHICAL MATRICES

Low-rank approximation of far-field blocks

Fig. 10: Structure of a Hierarchical matrix

Fig. 11: Cost in terms of doing matrix assembly and matrix-vector product is reduced to $\mathcal{O}N\log N$ from N^2

CODE STRUCTURE

Fig. 12: Code structure

MINIMAL BUT COMPLETE DEMO

#include <kleme.h>
int main(int argc,char **argv)
{
 // parse mesh
 kleme::Mesh mesh(argv[1]);

GAK

// define dofhandler to handle mesh and basis function
kleme::DofHandler dofhandler(mesh, 0);

// create and assemble mass matrix
kleme::Mass m_matrix(&dofhandler);
m_matrix.assemble_matrix();

// prepare quadrature rule and kernel for later use
// in assembling stiffness matrix
kleme::Quadrature quad(mesh.get_dim(), 2);
kleme::ExponentialKernel kernel(1, 0.1, 45, 0.5);

// create and assemble stiffness matrix kleme:StiffnessHmatrix k_hmatrix(&dofhandler, &kernel, &quad); k_hmatrix.assemble_matrix();

// create solver
kleme::SLEPc_Solver_hmatrix(&k_hmatrix, &m_matrix);
int no_of_eigens = 100;
solver_hmatrix.solve(no_of_eigens);

// postprocess
kleme::Postprocess postprocess(&dofhandler);
postprocess.write_vtk(slepc_solver.eigen_vectors, "slepc_eigens.vtk");

```
return 0;
}
```

F. Kiszkurno | A.A. Chaudhry | C. Zhang | 3rd URS PhDs Workshop | 23-24 Oct., 2023

DOXYGEN DOCUMENTATION

Kleme 0.3 Karhunen-Loève expansion made easy	Main Page Related Pages Namespaces • Classes • Files •	9" Search
cleme Example Common use	kleme Documentation	
Code structure Performance Highlights Credits License	kleme stands for Karhunen-Loève expansion made easy. It is a C++ library for solving the integral eigen-value problem (IEVP) from discretizing the kernel operator with the Galerkin method. Example	
todo Namespaces Classes Files	<pre>#Jrclude #Loss ** ** argv /</pre>	

CONCLUSIONS

- theories and techniques behind kleme
- demonstration of the use
- working on further improvement of internal data structure and documentation

Thanks!