

Enhanced Bayesian Network for Reliability Assessment: Application to Salt Domes as Disposal Sites for Radioactive Waste Problem

Andrea Perin

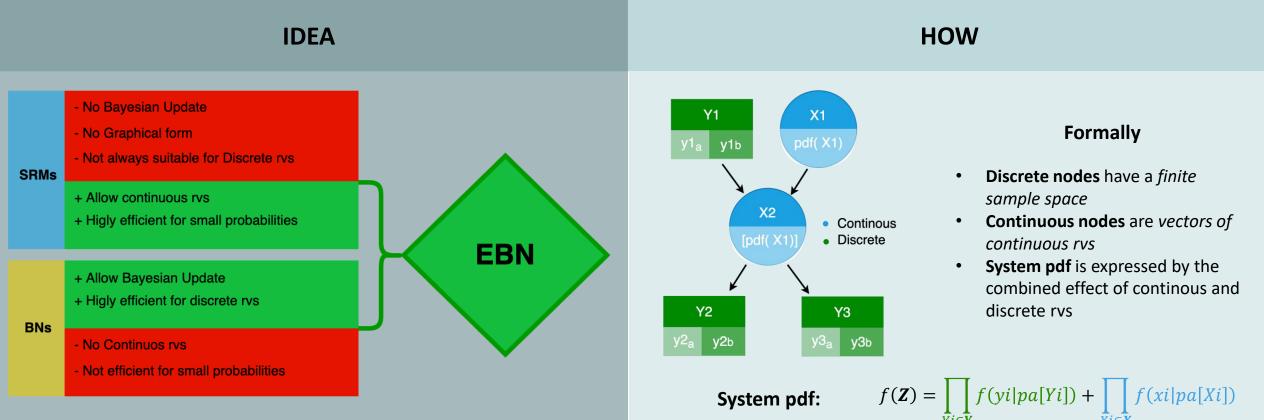
Institute for Risk and Reliability Leibniz Universität Hannover

Problem Introduction

Risk Assessment of salt domes as long-term radioactive waste disposal

Project	Salt Dome Problem	
 Project goal is to develop a platform for the probabilistic assessment of unintentional leakage of radioactive materials associated with deep repositories: Enhanced Bayesian Network (EBN) for risk assessment Thermal-Hydraulic-Components (THC) model for density-driven flow 	 Radionuclide transport inside a salt dome is Thermal-Hydraulic-Components (THC) transport phenomenon: Thermal: Geothermal gradient + Heat generated by waste decay Hydraulic: Groundwater flow in fractured porous media 	
RCLUSS Sit Bins Director	 Components: Salt and radionuclides are the 2 components of interest Salt → salt dissolution affects flow velocity and vice-versa (Variable density and viscosity flow) Radionuclide → Quantity of interest for safe/fail state definition Reuired safety constrain: uncontaminate biosphere over a time span of 1M years 	

Andrea Perin



Risk Assessment through Enhanced Bayesian Network (EBN)

Risk Assessment (EBN) – General Concepts

eBNs (BNs Enhanced with SRM) are a tool able to:

- Implement Discrete and Continuous rvs
- With arbitrary distributions
- And any dependency

Andrea Perin

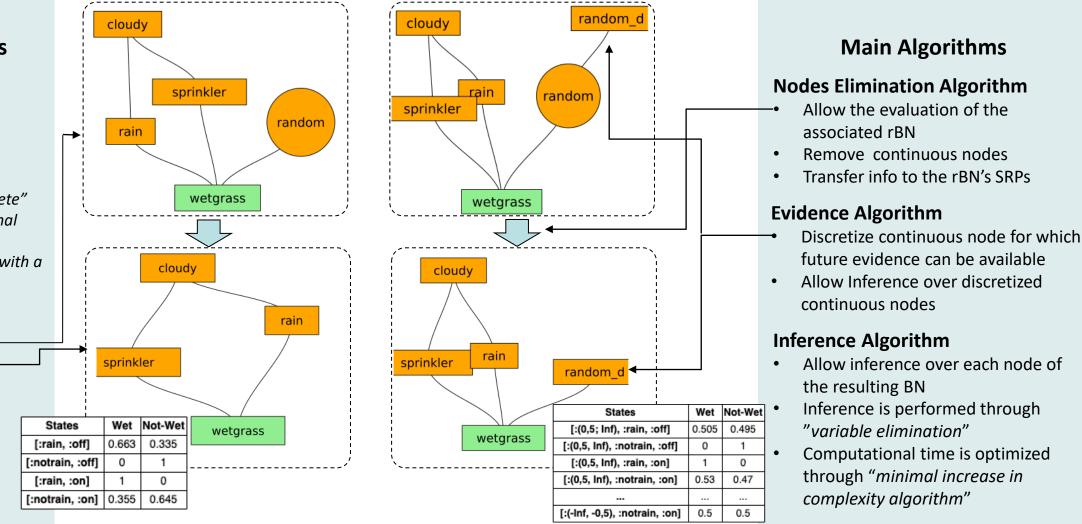
The problem of the evaluation of discrete probabilities (or pdf) of

each node with at least one continuous parent has the same

mathematical form of a Structural Reliability Problem!

Risk Assessment (EBN) – Main Features

Main Structures

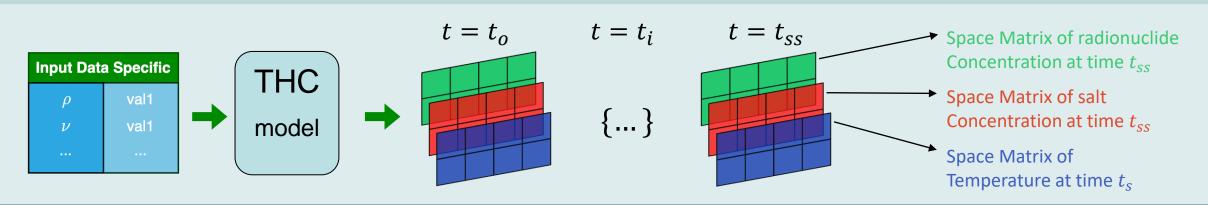

Nodes

- RootNode
- StandardNode
- FunctionalNode

Each node can be "Discrete" with a discrete Conditional Probability Distribution (dCPD) or "Continuous" with a continuos CPD (cCPD)

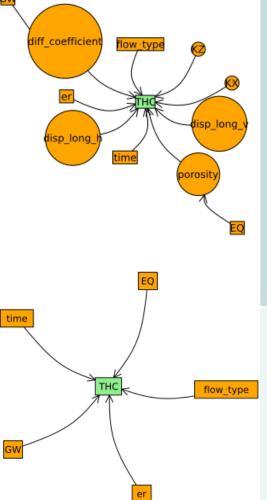
Networks

- EnhancedBN⁻
- ReducedBN (rBN)[—]
- BN


Implementation

Implementation – THC solver

Model's output


Post-Processing + Performance Function

Implementation – EBN

Earthquake (EQ):

DiscreteRootNode
 :happen= 10e⁻⁵
 :not_happen = 1 - 10e⁻⁵

Porosity (porosity)

- Child of Earthquake
- ContinuousStandardNode :happen => trunc N(3; 0.5) :not_happen => trunc N(1; 0.5)

Global-warming (GW)

DiscreteRootNode

 :warming => 0.7
 :astoday => 0.2
 :cooling => 0.1

Diffusion (diff_coefficient)

- Child of Global-Warming
- ContinuousStandardNode :warming => trunc N($2e^{-6}$; e^{-6}) :astoday => trunc N($2e^{-8}$; e^{-7}) :cooling => trunc N ($2e^{-9}$; e^{-6})

Extreme Rain (er)

- DiscreteRootNode :extremerain => 0.4 :no_extremerain => 0.6
- Influenced parameters :extremerain => :head = 1.2 :no_extremerain => :head = 0.8

Hydraulic Conductivity x-direction (KX)

ContinuousRootNode(truncated N($9.81e^{-6}; e^{-4}$))

Hydraulic Conductivity z-direction (KZ)

ContinuousRootNode(truncated N(9.81e⁻⁶; e⁻⁴))

Time Scenario

Short (10^5 days) or Long (10^7 days)

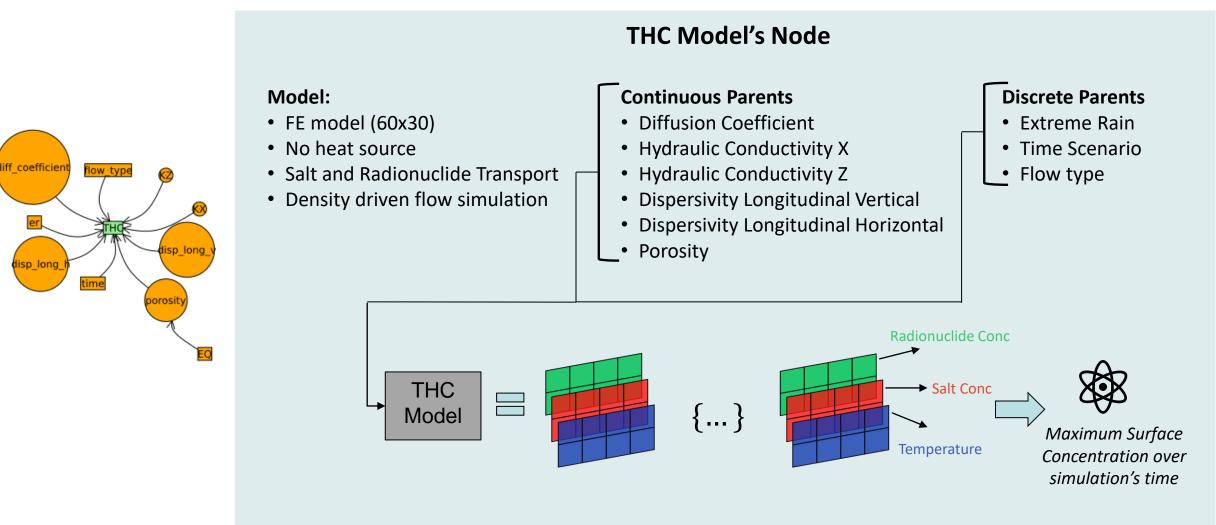
Longitudinal Dispersivity vertical(disp_long_v)

ContinuousRootNode(Uniform(10; 60))

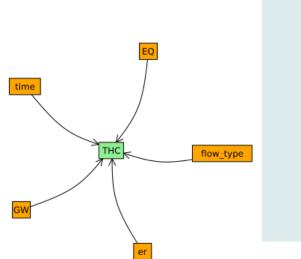
Longitudinal Dispersivity horizontal (disp_long_h)

ContinuousRootNode(Uniform(1; 6))

Flow Type


Steady-State or Transient Solution

Andrea Perin


Implementation – EBN

Implementation – Results

rBN – THC model's Node

- Extreme Rain => 2 states
- Time Scenario => 2 states
- Flow type => 2 states
- Earthquake => 2 states
- Global Warming => 3 states

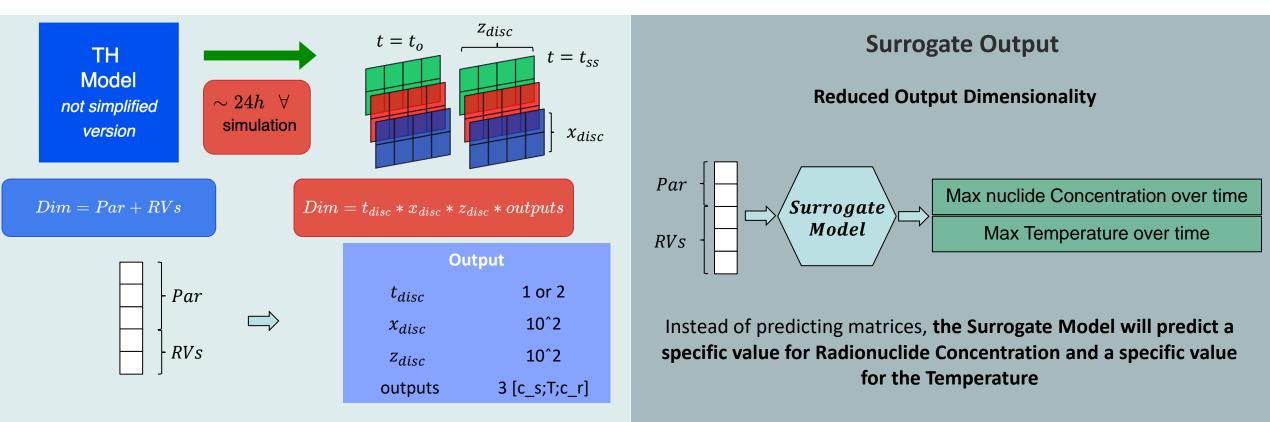
- $2^4 * 3 = 48$ SRPs (200 simulations each)
- Performance => Surface Concentration > 0

state	fail				fail	safe
comb 1	0.995	0.005		comb 22	0.985	0.015
comb 2	1	0		comb 23	0.94	0.06
comb 3	0.87	0.13	ر ۲	comb 24	0.98	0.02
comb 4	0.885	0.114	J	comb 25	1	0
comb 5	0.92	0.079) (comb 26	1	0
comb 6	0.875	0.125	()	comb 27	0.985	0.015
comb 7	1	0		comb 28	0.82	0.18
comb 8	0.83	0.17		comb 29	0.93	0.069
comb 9	0.985	0.015		comb 30	0.835	0.165
comb 10	0.99	0.01		comb 31	0.905	0.094
comb 11	0.885	0.114		comb 32	0.895	0.104
comb 12	0.92	0.079		comb 33	0.905	0.094

Implementation – Results

rBN – Inference

Time Scenario -	<pre>[p(time_long THC_fail) = 0.57 [p(time_short THC_fail) = 0.43</pre>	Global Warming -	$\begin{cases} p(cooling THC_fail) = 0.11 \\ p(astoday THC_fail) = 0.19 \\ p(warming THC_fail) = 0.70 \end{cases}$
Earthquake -	$ \left[\begin{array}{l} p(earthquake THC_fail) = 10^{-5} \\ p(no_earthquake THC_fail) = 0.99999 \end{array} \right] $	Extreme Rain 🖃	$p(er THC_fail) = 0.54$ $p(no_er THC_fail) = 0.46$


- Deal with multidisciplinary and continuous node
- Allow "What-if" analysis through Inference algorithm

- Allow "model Update" through Bayesian update.
- Computational cost depends on model only

FE Models are too computational expensive in a framework where are required to be run several times in different scenarios, especially when low probability of failure have to be established

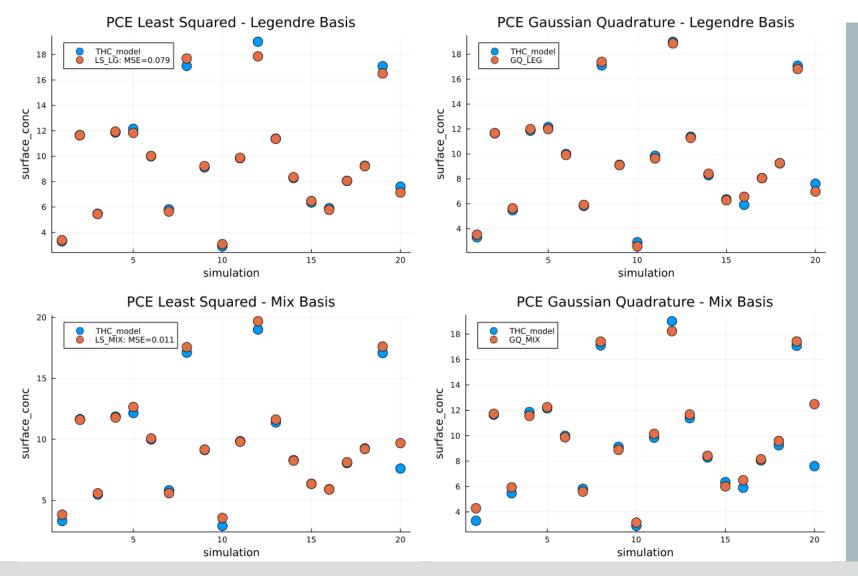
With a 24h simulation we obtain 1 output sample of 10⁴ dimension!

Interval Predictor Model (IPM): No feasible solution for the optimization problem

Polynomial Chaos Expansion (PCE) with Iso-probabilistic transformation

Variables	FirstOrder	FirstOrderStdError	TotalEffect	TotalEffectStdError
head_factor	0.0045	0.0504	0.0101	0.0653
KZ	0.1224	0.0532	0.548	0.0826
КХ	0.2319	0.0539	0.6133	0.099
disp_long_h	0.1791	0.0503	0.279	0.0645
disp_long_v	0	0.0488	0	0.0636
porosity	0	0.0476	0	0.0665
diff coefficient	-0.0016	0.0479	0.0008	0.0625

Sensitivity Analysis

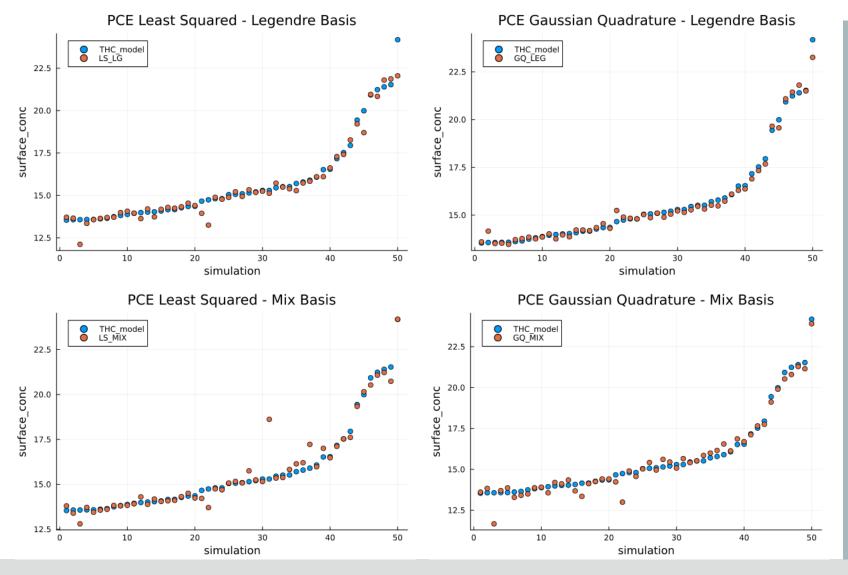

PCEs have been tested with 4 different combination of basis/point determination strategies:

- Least Square Legendre Basis Only
- Least Square Mixed Legendre/Hermite Basis
- Gaussian Quadrature Legendre Basis Only
- Gaussian Quadrature Mixed Legendre/Hermite Basis

PCE Random Variables

lest Mise with 150 failuoin samples					
LS_leg	LS_mix	GQ_leg	GQ_mix		
0.339	0.268	0.269	0.352		

Toct MCE with 1EO random camples


All the the combinations of basis and points determination algorithm are obtained with:

- degree 6
- 216 samples (equal to ones required by Gaussian Quadrature)

All the the combinations of basis and points determination algorithm seems to perform good with a slightly better MSE for Least Squared and Mix Basis (Legendre for Uniform distributions and Hermite for Gaussian distributions)

Test MSE 100 samples in failure region

LS_leg	LS_mix	GQ_leg	GQ_mix
0.255	0.342	0.057	0.213

All the the combinations of basis and points determination algorithm are obtained with:

- degree 6
- 216 samples (equal to ones required by Gaussian Quadrature)

PCE with Gaussian Quadrature and degree 6 (216 samples) is the one that perform better in prediction of system failure state.

Conclusions & Outlooks

Conclusions & Outlooks

RADON Project

- In-depth analysis of the events (eBN nodes) and their influences on THC model's inputs:
 - NEA report Updating the NEA International FEP List An Integration Group for the Safety Case (IGSC) Technical Note
 - Projekt ANSICHT FEP Katalog für das Endlagerstandortmodell SÜD

EBN

- Interval Probability for Discrete Nodes
 => CredalNetwork
- P-Boxes for Continuous Nodes
- Gaussian Process to model the error of PCE
 => Interval model

ACKNOWLEDGMENTS

Funded by *Bundesgesellschaft für Endlagerung* (**BGE**) the federal company for radioactive waste disposal