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Data structure – Overview and recap

Benchmark
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Model outputs

• Model parameters are stored as 

YAML files

• Input: literature and field data from 

benchmark scenarios

• Referenced parameters can be 

utilized in process models and 

inversions

• Advantage: simple, easily 

accessible storage of important 

model parameters
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Data structure – YAML-files

OpalinusClay_MontTerri.yml

1 Tertiary_sandstone.yml

2 UpperJurassic_sandstone.yml

3 MidJurassic_Opalinus_MontTerri.yml

4 LowerJurassic_claystone.yml

5 Bunter_sandstone.yml
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Data structure – YAML-files

OpalinusClay_MontTerri.yml

1 Tertiary_sandstone.yml

2 UpperJurassic_sandstone.yml

3 MidJurassic_Opalinus_MontTerri.yml

4 LowerJurassic_claystone.yml

5 Bunter_sandstone.yml

3 MidJurassic_Opalinus_MontTerri.ymlMidJurassic_Opalinus_default.yml

Density_default

Porosity_default

HydraulicConductivity_default

HeatCapacity_default

ElectrResistivity_default

HydraulicConductivity_MontTerri

ElectrResistivity_MontTerri

DEFAULT VALUES SITE SPECIFIC VALUES
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Data structure – YAML-files

OpalinusClay_MontTerri.yml

1 Tertiary_sandstone.yml

2 UpperJurassic_sandstone.yml

3 MidJurassic_Opalinus_MontTerri.yml

4 LowerJurassic_claystone.yml

5 Bunter_sandstone.yml

3 MidJurassic_Opalinus_MontTerri.yml

Density_default

Porosity_default

HydraulicConductivity_MontTerri

HeatCapacity_default

ElectrResistivity_MontTerri

COMBINED VALUES
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Data structure – YAML-files

Benchmark

scenarios

Physics-based

model

Surrogate

model

Inverse model

YAML - DB

Model parameters

Model outputs

• Model parameters can be used as 

input for any kind of simulation / 

model

• End Goal: Library for simulation-

relevant model parameters that cover 

all benchmark scenarios of possible 

repository sites.
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Data structure – Integrating YAML DB into our workflow

Benchmark

scenarios

Physics-based

model

Surrogate

model

Inverse model

YAML - DB

Model parameters

Model outputs

How can we incorporate the YAML-DB 

into a physics-based model?
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Data structure – Integrating YAML DB into our workflow

• 2D advective-diffusive transport simulation 

in a simple geometry

• Input parameters for simulation: Porosity, 

Hydraulic conductivity

• Values are imported from YAML-files that are 

stored in the YAML-DB

• Parameter uncertainties can be included by 

importing deviation value from YAML file

𝑲 = 𝟏 ∗ 𝟏𝟎−𝟔

𝑲 = 𝟑 ∗ 𝟏𝟎−𝟒 ± 0.5 ∗ 10−4

Φ = 0.12

Source cell
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Optimal Experimental Design - Recap

• Data processing can compensate for missing 

or inadequate data only to a certain extent

• Survey optimization aims at optimizing the 

information content of (geo)physical data 

sets while also limiting acquisition expenses 

(time and equipment)

How can we reach the cost-benefit optimum?

Adapted from Maurer, 2010
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Optimal Experimental Design - Recap

“Compare-R” method (Wilkinson et al., 2015):

• Uses resolution matrix of linearized Gauss-Newton solution for ERT problem; defined as:

𝑅 = 𝐺𝑇𝐺 + 𝐶 −1 𝐺𝑇𝐺

• Iterative optimization starts from a set of base measurements -> calculation of change in resolution matrix 

for each possible new measurement

• All additional measurements are ranked according to improvement of resolution matrix:

𝐹𝐶𝑅 =
1

𝑚
σ𝑗=1
𝑚 𝑤𝑡,𝑗 ∆𝑅𝑏,𝑗

𝑅𝑐,𝑗

• Depending on chosen step size, n measurements with greatest benefit are added to base set
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Optimal Experimental Design – Model-driven OED

• Algorithm aims at giving “extra resolution” to 

regions that are influenced by transport process

• Underlying transport simulation is taken for 

creation of focusing mask at each time step

• If the simulated fluid concentration in a model 

cell is above a set threshold, it is considered 

“relevant”.
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Optimal Experimental Design – Incorporating uncertainties

• OED algorithm allows for incorporation of 

uncertainties, e.g., for hydraulic conductivity

• Multiple simulation runs for different K

values in defined range

• Value of the cell inside the mask reflects 

probability of concentration > threshold for 

simulation runs with variable K

• Incorporated in weighting factor of ranking 

function of OED
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Optimal Experimental Design – Model-driven OED

• “Petrophysical link” via Archie (1943) allows 

for estimation of electrical resistivities for a 

given fluid concentration

• Necessary for geophysical forward modelling 

and inversion 
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Optimal Experimental Design – Model-driven OED

• Two geophysical surveys presented: 

1. Optimized dataset using 25 electrodes and 

950 measurement points

2. Standard Dipole-Dipole configuration using 

50 electrodes and > 1100 measurements

• More electrodes -> more costs
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Optimal Experimental Design – Model-driven OED

• Created probability mask is used in OED 

algorithm: gives extra resolution to masked 

area with significant fluid concentrations

• Allows focusing of measurements to relevant 

areas of model domain

-> We aim at optimizing the information content

of (geo)physical data sets while also limiting 

acquisition expenses (time and equipment)
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Smart Monitoring – Outlook and next steps

Data management:

• Continue with literature research and fill YAML-DB

• Unify existing YAML files and datasets and integrate them into our workflows

Optimal Experimental Design:

• Implement data-driven OED and compare to model-driven approach (idea of hybrid OED algorithm?)

• Adapt OED to other (geo)physical parameters and optimize datasets for joint inversions
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Thanks for your attention!
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Optimal Experimental Design – Application to transport processes

Data driven active OED:

Makes use of the acquired data at a certain time to focus the survey on the region of the model 

where changes occur.

Model driven active OED:

Utilizes an underlying transport simulation to focus the measurements on the region of the model 

that shows transport-induced changes.
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Optimal Experimental Design - Recap

Compare-R” method (Wilkinson et al., 2015):

• Uses resolution matrix of linearized Gauss-Newton solution for ERT problem; defined as:

𝑅 = 𝐺𝑇𝐺 + 𝐶 −1 𝐺𝑇𝐺

• Iterative optimization starts from a set of base measurements -> calculation of change in resolution matrix 

for each possible new measurement:

∆𝑅𝑏 =
𝑧

1+ 𝑔∗𝑧
𝑔𝑇 − 𝑦𝑇 where     𝑧 = 𝐺𝑏

𝑇𝑔𝑏 + 𝐶
−1
𝑔, 𝑦 = 𝐺𝑏

𝑇𝐺𝑏 𝑧

• All additional measurements are ranked according to improvement of resolution matrix:

𝐹𝐶𝑅 =
1

𝑚
σ𝑗=1
𝑚 𝑤𝑡,𝑗 ∆𝑅𝑏,𝑗

𝑅𝑐,𝑗

• Depending on chosen step size, n measurements with greatest benefit are added to base set
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