

Effect of mixing on groundwater age and life expectancy simulations in density-dependent flow

Jonas Suilmann

Motivation

- Salt dome as host rock
- Relevant methods and processes:
 - Density-dependent flow
 - Heat transport (variable viscosity flow)
 - Groundwater age as exclusion criterium
 - Potential radionuclide migration
 - Life expectancy as radionuclide travel time estimate (Cornaton et al. 2008)
 - Uncertain transport parameters

Salt dome Problem

- Simplified hydrogeological situation above saltdome
- **Density-dependent flow** benchmark for numerical codes
- Strongly coupled flow & transport (density variation of 20 %
- Intensively investigated in the 80's and 90's (Herbert et al. 1988, Oldenburg and Pruess 1995, Kolditz et al. 1998, etc.)
- Different diffusion coefficients and dispersivities used

Holzbecher et al. 2010

Salt dome Problem

Conceptual model:

Flow solution (steady state):

Kolditz et al. 1998

10 yrs

Salt dome Problem

- Base case from literature: $\alpha_{L} = 20 \text{ m}, \alpha_{T} = 2 \text{ m}, D = 1.39 \text{e}-8 \text{ m}^2/\text{s}$
- 150x75 elements
- Steady-state flow field:

Saltflow model (Molson & Frind, 2022) 300 Elev. (m) 200 100 300 600 900 Distance (m) C/Co 0.95 0.85 0.75 Elev. (m) 200 0.65 0.55 0.45 100 0.35 0.25 0.15 0.05 300 600 900 0 Distance (m)

Steady-state salt concentration:

Governing Equations

Darcy equation:

Flow equation:

Mass transport equation:

$$\begin{aligned} \mathbf{q}_{i} &= -\mathbf{K}_{ij} \left[\frac{\partial \psi}{\partial x_{j}} + \rho_{r} \mathbf{n}_{j} \right] \\ \frac{\partial}{\partial x_{i}} \left[\mathbf{K}_{ij} \left(\frac{\partial \psi}{\partial x_{j}} + \gamma c \mathbf{n}_{j} \right) \right] &= S_{s} \frac{\partial \psi}{\partial t} \\ \frac{\partial}{\partial x_{i}} \left(\mathbf{D}_{ij} \frac{\partial c}{\partial x_{j}} \right) - \mathbf{v}_{i} \frac{\partial c}{\partial x_{i}} = \frac{\partial c}{\partial t} \end{aligned}$$

FEM code **Saltflow** (Molson and Frind 2023)

Density-Dependent Flow and Mass or Age Transport Model in Three Dimensions

Methods: Dispersion

- Hydrodynamic dispersion tensor \mathbf{D}_{ij} $\mathbf{D}_{ij} = D_m \mathbf{I} + (\alpha_L - \alpha_T) \frac{\mathbf{v}_i \mathbf{v}_i^T}{|\mathbf{v}|} + \alpha_T |\mathbf{v}| \mathbf{I}$
- Molecular Diffusion coefficient D_m
- Macroscopic dispersion
 - Mixing effect due to aquifer heterogeneity
 - Different flow paths
 - Dependent on flow velocity
 - Longitudinal dispersivity α_L in flow direction
 - Transverse dispersivity α_T perpendicular to flow

$$\frac{\partial}{\partial x_i} \left(\mathbf{D}_{ij} \frac{\partial c}{\partial x_j} \right) - \mathbf{v}_i \frac{\partial c}{\partial x_i} = \frac{\partial c}{\partial t}$$

Graf 2022: Lecture on Groundwater modeling

Methods: Dispersion

- Macro dispersion increases with travel distance
- Despite many attempts: No universal scaling law (Zech et al. 2015)
- Dipersivities are largely site-specific
- $\alpha_L \approx 0.1 \dots 0.01 \alpha_{TH}$
- $\alpha_{TH} \approx 0.1 \alpha_{TV}$ (Zech et al. 2019)
- BUT, fixed ratios are site-specific
- No general law
- Dispersivities are subject of high uncertainty

Graf 2022: Lecture on Groundwater modeling

Methods: Groundwater Life Expectancy

Concept of groundwater age and life expectancy

T – residence time; A – groundwater age; E – life expectancy

Methods: Groundwater Life Expectancy

- Concept of groundwater age and life expectancy
- Can be simulated directly using a transport equation (Goode 1996)
- Groundwater age

$$\frac{\partial}{\partial x_i} \left(\mathbf{D}_{ij} \frac{\partial A}{\partial x_j} \right) - \mathbf{v}_i \frac{\partial A}{\partial x_i} + 1 = 0$$

• Groundwater life expectancy

$$rac{\partial}{\partial x_i}igg(\mathbf{D}_{ij}rac{\partial E}{\partial x_j}igg) + \mathbf{v}_irac{\partial E}{\partial x_i} + 1 = 0$$

Page 11/25

Workflow

Transient simulations of coupled flow and transport using 1. uncertain transport parameters

Using steady-state flow velocities as input for groundwater 2. age and life expectancy simulations using uncertain transport parameters

Research Objective

Principle study using the Salt dome problem as example for:

- Investigating effects of **uncertain transport parameters**
 - on **density-dependent flow** above salt dome (Salt dome problem)
 - on resulting groundwater age and life expectancy in density-dependent flow

Understand how mixing processes affect life expectancy in DDF in the safety assessment of nuclear waste disposal

Uncertain Transport Parameters

- Longitudinal Dispersivity $\alpha_L = [5, 10, 20]$ m
- Transverse Dispersivity $\alpha_T = [0.1 2]$ m
- Diffusion coefficient $D_m = [5e-9, 1e-9, 5e-10] \text{ m}^2/\text{s}$
- Base case: $\alpha_L = 10 \text{ m}$, $\alpha_T = 0.4 \text{ m}$, $D_m = 1e-9 \text{ m}^2/\text{s}$

Results - Base Case

Salt concentration

Groundwater age

• Effect of longitudinal dispersivity on DDF

 $D_m = 10^{-9} \,\mathrm{m^2 \, s^{-1}}$

• Effect of transverse dispersivity on DDF

 $D_m = 10^{-9} \,\mathrm{m^2 \, s^{-1}}$

INSTITUTE FOR RISK

• Effect of longitudinal and transverse dispersivity on total steady-state salt mass $D_m = 10^{-9} \,\mathrm{m^2 \, s^{-1}}$

• Effect of longitudinal and transverse dispersivity on life expectancy

• Effect of longitudinal and transverse dispersivity on maximum life expectancy

 $D_m = 10^{-9} \,\mathrm{m^2 \, s^{-1}}$

• Effect of diffusion on maximum life expectancy

Page 21/25

INSTITUTE FOR RISK AND RELIABILITY

Results

 Effect of diffusion on life expectancy along lower boundary

Summary & Conclusion

- DDF system in the salt dome problem is highly sensitive to uncertain dispersivities
- Maximum life expectancy is highly sensitive to the dispersivity-dependent DDF velocities
- Diffusion has a significant direct effect on maximum life expectancies
- Longitudinal and transverse dispersion highly affect life expectancies as used in the safety assessment of repositories
- Underestimating longitudinal and/or transverse dispersivity leads to overestimating life expectancy close to a salt dome and, thus, to overestimating safety of nuclear waste disposal sites.

Importance of considering uncertain transport parameters in evaluating life expectancy in the safety assessment in nuclear waste disposal

Outlook

Results will soon be submitted

Next step:

- Including heat transport
- Investigating thermohaline flow in fractured-porous media in a larger model domain of salt dome including adjacent strata
- Investigating Salt chimney effect (Canova et al. 2018)
 Convection due to higher thermal conductivity of salt

eibniz

Universität Hannover

Thanks for your attention!

Literature

- Deman, G., Konakli, K., Sudret, B., Kerrou, J., Perrochet, P., Benabderrah- mane, H., 2016. Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hy- drogeological model. Reliability Engineering & System Safety 147, 156–169. doi:10.1016/j.ress.2015.11.005.
- Diersch, H.J.G., 2013. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Springer Berlin Heidelberg, Berlin, Heidelberg. doi:10.1007/978-3-642-38739-5.
- Fahs, M., Koohbor, B., Shao, Q., Doummar, J., Baalousha, H.M., Voss, C.I., 2022. Effect of flow–direction–dependent dispersivity on seawater intrusion in coastal aquifers. Water Resources Research 58. doi:10.1029/2022WR032315.
- Goode, Daniel J. (1996): Direct Simulation of Groundwater Age. In *Water Resour. Res.* 32 (2), pp. 289–296. DOI: 10.1029/95WR03401.
- Herbert, A. W.; Jackson, C. P.; Lever, D. A. (1988): Coupled groundwater flow and solute transport with fluid density strongly dependent upon concentration. In: *Water Resour. Res.* 24 (10), S. 1781–1795. DOI: 10.1029/WR024i010p01781.
- Johns, Russell T.; Rivera, Alfonso (1996): Comment on "Dispersive Transport Dynamics in a Strongly Coupled Groundwater-Brine Flow System" by Curtis M. Oldenburg and Karsten Pruess. In Water Resour. Res. 32 (11), pp. 3405–3410. DOI: 10.1029/96WR02495.
- Kolditz, Olaf; Ratke, Rainer; Diersch, Hans-Jörg G.; Zielke, Werner (1998): Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models. In: *Advances in Water Resources* 21 (1), S. 27–46. DOI: 10.1016/S0309-1708(96)00034-6.
- Konikow, L. F.; P. J. Campbell; W. E. Sanford. (1996): Modelling brine transport in a porous medium: a re-evaluation of the hydrocoin level 1, case 5 problem. In : Calibration and Reliability in Groundwater Modeling, edited by K. Kovar, P. van der Heijde, IAHS Publ. 237, pp. 363–372.
- Molson, J.W., Frind, E.O., 2022. SALTFLOW USER GUIDE. Version 5.0. Density-dependent flow and mass or age transport model in three dimensions. Université Laval & University of Waterloo.
- Oldenburg, Curtis M.; Pruess, Karsten (1995): Dispersive Transport Dynamics in a Strongly Coupled Groundwater-Brine Flow System. In: *Water Resour. Res.* 31 (2), S. 289–302. DOI: 10.1029/94WR02272.
- Younes, A.; Ackerer, Ph.; Mose, R. (1999): Modeling Variable Density Flow and Solute Transport in Porous Medium: 2. Re-Evaluation of the Salt Dome Flow Problem. In *Transp Porous Med* 35 (3), pp. 375–394. DOI: 10.1023/A:1006504326005.
- Younes, A., Fahs, M., Ataie-Ashtiani, B., Simmons, C.T., 2020. Effect of distance-dependent dispersivity on density-driven flow in porous media. Journal of Hydrology 589, 125204. doi:10.1016/j.jhydrol.2020.125204