

Reduction of scenario uncertainties through climate models (REDUKLIM)

4. URS Workshop – 12.06.2024 Aachen

Marc Johnen

Research aims

- Identify climate developments in the long term safety and their uncertainties
- Consideration of geological and climatic situation due to the assessment period of one million years in the German law
- Flow- and Transport simulations to show the potential influence of climate developments on the geosphere
- Assessment of transport paths and lengths over the assessment period of one million years for possible contamination of radionuclides
- Consideration of uncertainties in the context of the site selection and long term safety analysis

Climatic developments

- Over the assessment period of one million years, changes in climatic conditions can be expected in Germany
- These can occur once or several times as part of climate cycles
- In this project, climate developments are represented as stylized states
 - Climate developments are implemented by changing parameters and boundary conditions

Climate developments

- Actual work from GRS with possible climate scenario for Germany (abstracted here)
 - No separation into scenarios for northern and southern Germany
- No change of model geometry while simulation possible in d³f++

Model region – ANSICHT North

Generic geological site model with relation to geological units which are investigated in Germany

Model region – ANSICHT North

- Model area with smaller amount of lithostratigraphic units
 - Upper Jurassic as lowest unit
 - No further influence from underlying units impermeable Middle Jurassic
- 9 lithostratigraphic units with different characteristics
- The dimensions of the model area are approximately 10 km in width by up to 1.400 m in height.

Model region – ANSICHT North

	Per	meability [m²]	Effective porosit	y[-]	
	Quaternary	1·10 ⁻¹⁴	0,2		
South	Albium	1·10 ⁻¹⁸	0,05		
	Hils sandstone	1.10-14	0,1		
	Aptium	1·10 ⁻¹⁸	0,05		
	Barremium	1·10 ^{-19*}	0,05	Einschluss	wirksamer Gebirgsbereich (ewG)
	Hauterivium	1·10 ^{-19*}	0,05	containme	ent providing rock zone (CRZ)
	Valanginium	1·10 ⁻¹⁶	0,05		
	Whealden	1·10 ⁻¹⁴	0,075		
	Upper Jurassic	1·10 ⁻¹⁵	0,01		
		*vertical 1·10 ⁻²⁰ [n	1 ²]		

GRS

Boundary conditions "present climate"

- Defined base case with parameters after Alfarra et al. 2020
- Hydraulic gradient of 0.002 m/m added to the depth depended pressure function

Brandefelt et al. 2019 /SKB TR-19-04

Flow velocities "present climate"

Boundary conditions "permafrost"

- Reduced permeability in first two lithological units
- No groundwater recharge

Brandefelt et al. 2019 /SKB TR-19-04

Flow velocities "permafrost"

	flow velocity (m/s) / vectors	Pressure (Pa)					
	5.0e-20 le-18 le-17 le-16 le-15 le-14 le-13 le-12 le-11 le-10 le-9 le-8 5.0e-07	2.5e+02	5e+6	1e+7	1.5e+7	2e+7	2.5e+07
<mark>⊿</mark> Y							
7	Y						

Boundary conditions "permafrost and glacier"

- Model boundary conditions representing the transition from a permafrost area to a glacier
- Overlap between glacier and permafrost of 100 m

Brandefelt et al. 2019 /SKB TR-19-04

Flow velocities "permafrost and glacier"

	flow velocity (m/s) / vectors	Pressure (Pa)						
	5.0e-20 le-18 le-17 le-16 le-15 le-14 le-13 le-12 le-11 le-10 le-9 le-8 5.0e-07	2.5e+02	5e+6	1e+7	1.5e+7	2e+7	2.5e+07	
<mark>≜</mark> Y								
7	x							

Boundary conditions "glacier"

- Glacier covers whole model area
- Model area still represents the area of a glacier front

Pressure function

Flow velocities "glacier"

High pressure and pressure gradient with higher flow velocities

	flow velocity (m/s) / vectors	Pressure (Pa)						
	5.0e-20 le-18 le-17 le-16 le-15 le-14 le-13 le-12 le-11 le-10 le-9 le-8 5.0e-07	2.5e+02	5e+6	1e+7	1.5e+7	2e+7	2.5e+07	
۸Y								
-								

Boundary conditions "erosion"

- Within a glacial cycle material can be eroded at the surface
- Eroded areas can be filled with sediments with increased permeabilities

Pressure function

Flow velocities "erosion"

• Highest flow velocities in comparison to the other scenarios in the near surface units

	flow velocity (m/s) / vectors	Pressure (Pa)						
	5.0e-20 le-18 le-17 le-16 le-15 le-14 le-13 le-12 le-11 le-10 le-9 le-8 5.0e-07	2.5e+02	5e+6	1e+7	1.5e+7	2e+7	2.5e+07	
۸Y								
7	v							

Boundary conditions "erosion" (vertical valley)

- Within a glacial cycle material can be eroded at the surface
- Eroded areas can be filled with sediments with increased permeabilities

Brandefelt et al. 2019 /SKB TR-19-04

Pressure function

Flow velocities "erosion" (vertical valley)

Highest flow velocities in comparison to the other scenarios in the near surface units

flow velocity (m/s) 5.0e-20 1e-18 1e-17 1e-16 1e-15 1e-14 1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 5.0e-07

Pressure (Pa) 2.5e+02 2e+6 4e+6 6e+6 8e+6 1e+7 1.2e+7 1.4e+7 1.6e+7 1.8e+7 2e+7 2.2e+7 2.5e+07

Boundary conditions "sea level rise"

- With the retreat of the glacier because of temperature increase, sea level rises can occur
- Seal level rise represented by higher pressure at model surface

Brandefelt et al. 2019 /SKB TR-19-04

Flow velocities "sea level rise"

- Very low flow velocities
- Small convection cells at model surface

	flow velocity (m/s) / vectors	Pressure (Pa)						
	5.0e-20 le-18 le-17 le-16 le-15 le-14 le-13 le-12 le-11 le-10 le-9 le-8 5.0e-07	2.5e+02	5e+6	1e+7	1.5e+7	2e+7	2.5e+07	
۸Y								

Flow velocities "sea level rise"

Salt concentration is influenced by the lithostratigraphical model units

	flow velocity (m/s) / vectors				rel. salt concentration						
	5.0e-20 le-18 le-17 le-1	6 1e-15 1e-14 1e-13 1e-	12 1e-11 1e-10 1e-9	1e-8 5.0e-07	0.0e+00	0.02	0.04 0.0	0.08	0.1	1.3e-01	
▲ Y											
z x											

Results

Ν

- Variation of flow velocities in different units
- All velocities are favourable after the requirements in the StandAG

flow velocity [m/s]

Results

- Climate state show comparable concentration curves at repository area
- Effects of climate developments seem small because the CRZ stays intact

Results

- Downstream of the repository the relative concentration show some differences in the concentration distribution
- Higher flow velocities in the climate states "glacier" and "glacier and permafrost" results in higher concentrations in the downstream

- "Base case"
- No substance input into surrounding layers within the assessment period of 1 million years
- Diffusive transport dominates
- Almost no advective transport

Non logarithmic

4. URS Workshop - Aachen - REDUKLIM

- "Base case"
- No substance input into surrounding layers within the assessment period of 1 million years
- Diffusive transport dominates
- Almost no advective transport

Tracer Concentration (kg)
1.0e-02 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 1.0e+02 5.2e-16

Flow velocity (m/s) e-16 1e-14 1e-13 1e-12 1e-11 1e-10 1.2e-09

logarithmic

- Example for illustration of evaluation
- Figure with model case in which
 - the diffusion coefficient (10x) and permeability (100x) are higher compared to the "base case",
 - dispersion is chosen to correspond to the base case
- Tracer concentration after 1 million years

non logarithmic

- Example for illustration of evaluation
- Figure with model case in which
 - the diffusion coefficient (10x) and permeability (100x) are higher compared to the "base case",
 - dispersion is chosen to correspond to the base case
- Tracer concentration after 1 million years

logarithmic

Evaluation of concentration

- Requirement for the long-term safety according to the Repository Safety Requirements Ordinance EndlSiAnfV:
 - §3 Assessment period; developments of the repository system: (1) Assessment period of 1 million years
 - §4 Safe enclosure of radioactive waste: (5) "For the expected developments, it shall be examined and demonstrated that during the assessment period
 - 1. a maximum total proportion of 10⁻⁴ and
 - 2. annually at most a proportion of 10⁻⁹
 - [...] is discharged from the area of the essential barriers."
 - §3 Bewertungszeitraum; Entwicklungen des Endlagersystems: (1) Bewertungszeitraum von 1 Mio. Jahre
 - §4 Sicherer Einschluss der radioaktiven Abfälle: (5) *"für die zu erwartende Entwicklungen ist zu prüfen und darzustellen, dass im Bewertungszeitraum*
 - 1. insgesamt höchstens ein Anteil von 10-4 und
 - 2. jährlich höchstens ein Anteil von 10-9
 - [...] aus dem Bereich der wesentlichen Barrieren ausgetragen wird."

Parameter variation – diffusion coefficient (10x) and permeability (100x)

d³f++ writes out the integrals of the substance quantities of the different units

Evaluation - summary

- Diffusive transport dominates
- Tracer transport distances are small
- Relative amount of tracer is below a proportion of 1.10⁻⁴ outside of the CRZ/ewG
- Higher diffusion coefficients are very sensitive to the safety criteria of the StandAG
 - Proportion can be higher than $1 \cdot 10^{-4}$ due to diffusion processes
- Effects of climate states do not change the concentration distribution in the CRZ/ewG area in a relevant extend

Categories of uncertainties

- Generic RESUS/ANSICHT model
- Some representative data for typical stratigraphical units in Germany
- Bandwidths for lithostratigraphical units \rightarrow Partial wide bandwidths
- > Change model parameters to get information about the sensitivity of different parameters

Categories of uncertainties

- Missing data
- Reliability of the data
- Applicability of the data
- Error ranges
- Spatial and temporal variability

*÷

- System understanding
- Simplifications
- Model assumptions
- Model boundaries

Scenario uncertainties

System understanding Uncertainty of future developments

- Absolute and relative error
 - Simulations with different grid refinements to address the error
- Repository area as line source for radionuclides
- Complexity of processes on smaller scale

Categories of uncertainties

Spatial and temporal variability

Model uncertainties

★-×÷

3

System understanding

- Simplifications
- Model assumptions
- Model boundaries

Scenario uncertainties

Л

System understanding

Uncertainty of future developments

- Broad range of possible scenarios
- Higher probability for "temperate climate" in the future

Summary

- Flow velocities changes through different considered climate states
- Groundwater models helps to understand the sensitivity of parameters and different climate scenarios
 - In low permeable claystone the concentration front does not reach the top of the CRZ in assessment period with parameters from ANSICHT model
 - Higher diffusion coefficient and Glacier load lead to transport in the Lower Cretaceous/Upper Jurassic units
 - Diffusion coefficient is an important parameter for host rock clay
 - Choice of parameters or differences in rock characteristics can have larger influence on model results than different climate states
 - Good exploration and choice of parameters will be very important in the site selection because of high sensitive parameters identified in simulations
 - Reduction of knowledge uncertainties of parameter sensitivity

Outlook

Model cases

- Further simulations with different parameter settings
 - Implement Taliki (unfrozen soil) in permafrost simulations
 - Different diffusion coefficient values (highest sensitivity up to now)
 - Use the data from CLIMBER-X for climate state cycles

Thank you for your attention!

Further information on the research project and the participating institutions can be found at <u>https://urs.ifgt.tu-freiberg.de/en/home</u>

This work is funded by Bundesgesellschaft für Endlagerung mbH (BGE) Research order number: STAFuE-21-4-Klei

Literature

- Alfarra, A., Bertrams, N., Bollingerfehr, W., Eickemeier, R., Flügge, J., Frenzel, B. & Maßmann, J. (2020): RESUS -Grundlagen zur Bewertung eines Endlagersystems in einer Tongesteinsformation größerer Mächtigkeit. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH. Braunschweig. GRS-571. ISBN 978-3-947685-57-8. 2020.
- Brandefelt, Jenny; Näslund, Jens-Ove; Liljedahl, Lillemor Claesson; Löfgren, Anders; Saetre, Peter (2019): Climate and climate-related issues for the safety evaluation SE-SFL. SKB; Svensk Kärnbränslehantering AB. Solna (SKB Technical Report, TR-19-04).
- Jobmann, M. et al. (2017): Sicherheits- und Nachweismethodik für ein Endlager im Tongestein in Deutschland Synthesebericht. DBE TECHNOLOGY, Peine.
- Kindlein, J.; Buhmann, D.; Mönig, J.; Spießl, S.; Wolf, J.: Bewertung der Wirksamkeit des Radionuklideinschlusses für ein Endlager in flach lagernden Salzformationen - Ergebnisse aus dem Vorhaben KOSINA. 02E11405A, GRS-496, Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbH, Braunschweig, 2018.
- Larue, Jürgen; Baltes, Bruno; Fischer, Heidemarie; Frieling, Gerd; Kock, Ingo; Navarro, Martin; Seher, Holger (2013): Radiologische Konsequenzenanalyse. Bericht zum Arbeitspaket 10; vorläufige Sicherheitsanalyse für den Standort Gorleben. Garching (GRS, GRS-289).
- Rübel, André; Gehrke, Anne Christine (2022): Modellierung des Radionuklidtransports im Tongestein Aktualisierung der Sicherheits- und Nachweismethodik für die HAW-Endlagerung im Tongestein in Deutschland. Gesellschaft für Anlagenund Reaktorsicherheit (GRS) gGmbH. Braunschweig. GRS-668. ISBN 978-3-949088-59-9. Mai 2022.