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Why study the deep future and general scope of this talk

• Climate change studies are often limited to ‘short’ timescales in consideration for governance and

policy, but there is a growing societal need and no shortage of scientific inquiries for far future studies

• Most notably concerns site selection and post-closure safety assessments for nuclear waste

disposal, as a number of environmental factors can compromise long-term safety

• Deep-future simulations have many uncertainties, but these can be partially addressed and explored

• This talk will focus on 2 investigations and their uncertainties, from long to very long timescales

.



Part 1:
Uncertainties beyond the first millennium

and long-term uptake of anthropogenic CO2

.
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Motivation
• Even without considering unpredictability of emissions

pathway and magnitude, predictions for deep future

CO2 concentration show considerable diversity
• Largely due to poor constraints on the long-term

carbon cycle
• Our study generally provides a new estimate on the

atmospheric lifetime of CO2 and attempts to quantify

the role of other factors
• Uncertainties:

• weathering feedback
• climate sensitivity,
• land carbon, methane cycle
• climate-carbon interactions

10 100 1k 10k 100k

Time after peak CO2 concentration (yr AP)

0.0

0.2

0.4

0.6

0.8

1.0

Ai
rb

or
ne

 fr
ac

tio
n 

of
 to

ta
l C

O 2
 re

le
as

e 
(%

)

Ocean invasion

Reactions with CaCO3
(Marine and terrestrial)

Silicate weathering

5000 PgC emission pulse

.



L i fe t ime Of Anthropogen ic CO2 4

Experimental set-up.

• Experiments start from a pre-industrial equilibrium state

and run for 100,000 years

• Simulations forced by the cumulative emission

scenarios of 0 PgC to 5000 PgC

• Interactive carbon cycle (interactive CO2)

• All ice sheets prescribed by their present-day state (no

interactive ice sheet model)
• Baseline experiment:

• CONTROL emissions pathway
• Present-day orbital configuration and methane
• Climate relaxes back to pre-industrial conditions
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Climate/carbon cycle response.

• Various processes function to remove

anthropogenic CO2 emissions
• Land:

• Uptake from enhanced productivity
• Partially or totally offset by soil respiration

• Ocean/Sediments:
• Air-sea CO2 exchange, dissolution ∼O(100−1)
• Ocean acidification, marine productivity
• Ocean invasion, mixing ∼O(102)
• Sea floor carbonate reactions, lysocline

response ∼O(103)

• Weathering:
• Carbonate weathering ∼O(103−4)
• Silicate weathering ∼O(105−6)
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Multi-exponential timescale analysis.

• By fitting our CO2 concentrations to the following

function using a least-squares fit

Catm(t) = 280+ Cmax
n∑
i=1
Ai · exp

(
− t
τi

)

we find mean relaxation timescales of approximately

540, 8000, and 184,000 years

• Magnitude and behaviour of ocean invasion and CaCO3
reactions with increasing emissions match literature

• Silicate weathering has a shorter timescale than in

literature and exhibits nonlinear behaviour
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Response of weathering feedbacks.

• Two types of terrestrial weathering

• Silicate weathering is an important negative feedback

which determines the timescale of the long-term response

to a perturbation in the carbon cycle (i.e., CO2 emissions)

• Present-day weathering rates are not accurately known;

temperature dependence is poorly constrained

• We use the most advanced weathering model available as

it is based on the most high-resolution lithological map

(GLiM, Hartmann et al. 2009)

• Response of silicate weathering to temperature in

CLIMBER-X stronger than in some previous studies

.
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Atmospheric lifetime of anthropogenic CO2

• Using the IRF, we determine a mean lifetime of 900 years across the different emission scenarios
• 10% of emissions persist for longer than 10 kyr, while 5% longer than 85 kyr
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Part 2:
Timing of the next glacial cycle

.
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The next glacial cycle
. • Orbital parameters (therefore solar insolation) is

known for the next ∼20 Myr

• Fundamental relationship between maximum summer

insolation at 65°N and CO2 concentration which can

diagnose glacial inception

smx65cr = −75 log
( CO2
280

)
+ 465

• Run similar experiments as before, but now with:
• orbital parameters
• different volcanic outgassings
• without/with interactive ice sheets

• Uncertainties:
• climate-carbon-ice sheet interactions
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Effect of the initial carbon state.

• Volcanic outgassing is a tuneable parameter

• For initial conditions in the model spin-up, we need an

assumption about the relationship between weathering

rate and volcanic outgassing

• Balancing outgassing with LGC weathering rate leads

to a steady decrease in CO2 over the next 100 kyr

• Balacing outgassing with minimum weathering rate

(LGM) leads to more than a 80 ppm difference in CO2
over 100 kyr

• Important with interactive ice sheets as it will determine

the timing of the next glacial cycle
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Natural length of the current interglacial.

• An imminent glacial inception could only occur at the

next local minima in insolation (∼500 yr AP) for CO2

values lower than approximately 225 ppm

• A decrease of over 50 ppm would have to have occurred

before 2500 CE for a Holocene glacial inception

• The estimated timing of the next glacial cycle under

natural conditions could change from ∼125 kyr AP to

∼50 kyr AP depending on volcanic outgassing

• This latter value more accurately matches previous

projections, meaning that an LGC volcanic outgassing

is appropriate
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Global warming and the next glacial cycle.

• Glacial inception in the experiment with LGC

outgassing would occur around ∼50 kyr AP under

present-day anthropogenic emissions (∼500 PgC)

• Glacial inception under almost all emission scenarios

occurs before 200 kyr irregardless of the chosen

volcanic outgassing

• These results contest previous studies

• The reason for this is related to the strong silicate

weathering feedback, significantly reducing the

atmospheric lifetime of CO2
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Confirmation of our diagnosis.

• We additionally run a set of experiments with the

LGC volcanic outgassing which have the ice sheet

model enabled for ∼100 kyr; this would confirm our

diagnosis and show ice sheet extent at the next

glaciation

• Glacial inception, where ice volume grows larger than

∼15 m sle, is only seen for the 0 and 500 PgC scenario

(as expected)

• For emission scenarios over 1000 PgC, a rapid

expansion of the ice sheet in the Canadian Arctic is not

seen, and glacial inception is evaded
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Summary & outlook
.

• Deep-future simulations have many uncertainties, but these can be partially addressed and explored

• CLIMBER-X is a powerful Earth system model which can be used to perform investigations that
cannot be easily done with other state-of-the-art Earth system models, like
1. Life time of anthropogenic CO2 and sensitivity of the long-term carbon cycle response

2. Future glacial cycles and the possible ice sheet extent and volume

3. Speculative studies such as the plausibility of a hothouse Earth, and multi-millennial "worst-case" scenarios
(not shown today)

Funded by:

.

.
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