Modelling of the deep future with CLIMBER-X Investigating uncertainties on very-long timescales

Christine Kaufhold, Matteo Willeit, Andrey Ganopolski

URS Aachen Workshop 2024

June 12, 2023

GRS

Potsdam Institute for Climate Impact Research

Why study the deep future and general scope of this talk

- Climate change studies are often limited to 'short' timescales in consideration for governance and policy, but there is a growing societal need and no shortage of scientific inquiries for far future studies
- Most notably concerns site selection and post-closure safety assessments for nuclear waste disposal, as a number of environmental factors can compromise long-term safety
- Deep-future simulations have many uncertainties, but these can be partially addressed and explored
- This talk will focus on 2 investigations and their uncertainties, from long to very long timescales

Part 1:

Uncertainties beyond the first millennium and long-term uptake of anthropogenic CO₂

Motivation

- Even without considering unpredictability of emissions pathway and magnitude, predictions for deep future CO₂ concentration show considerable diversity
- Largely due to poor constraints on the long-term carbon cycle
- Our study generally provides a new estimate on the atmospheric lifetime of CO₂ and attempts to quantify the role of other factors
- Uncertainties:
 - weathering feedback
 - climate sensitivity,
 - land carbon, methane cycle
 - climate-carbon interactions

Experimental set-up

- Experiments start from a pre-industrial equilibrium state and run for 100,000 years
- Simulations forced by the cumulative emission scenarios of 0 PgC to 5000 PgC
- Interactive carbon cycle (interactive CO₂)
- All ice sheets prescribed by their present-day state (no interactive ice sheet model)
- Baseline experiment:
 - CONTROL emissions pathway
 - Present-day orbital configuration and methane
 - Climate relaxes back to pre-industrial conditions

Climate/carbon cycle response

- Various processes function to remove anthropogenic CO₂ emissions
- Land:
 - Uptake from enhanced productivity
 - Partially or totally offset by soil respiration

Ocean/Sediments:

- Air-sea CO₂ exchange, dissolution $\sim O(10^{0-1})$ •
- Ocean acidification, marine productivity •
- Ocean invasion, mixing $\sim O(10^2)$ •
- Sea floor carbonate reactions, lysocline response $\sim O(10^3)$

Weathering:

- Carbonate weathering $\sim O(10^{3-4})$
- Silicate weathering $\sim O(10^{5-6})$

5

Multi-exponential timescale analysis

 By fitting our CO₂ concentrations to the following function using a least-squares fit

$$\mathsf{C}_{atm}(t) = \mathbf{280} + \mathsf{C}_{max} \sum_{i=1}^{n} \mathsf{A}_{i} \cdot \exp\left(-\frac{t}{\tau_{i}}
ight)$$

we find mean relaxation timescales of approximately 540, 8000, and 184,000 years

- Magnitude and behaviour of ocean invasion and CaCO₃ reactions with increasing emissions match literature
- Silicate weathering has a shorter timescale than in literature and exhibits nonlinear behaviour

Response of weathering feedbacks

- Two types of terrestrial weathering
- Silicate weathering is an important negative feedback which determines the timescale of the long-term response to a perturbation in the carbon cycle (i.e., CO₂ emissions)
- Present-day weathering rates are not accurately known; temperature dependence is poorly constrained
- We use the most advanced weathering model available as it is based on the most high-resolution lithological map (GLiM, Hartmann et al. 2009)
- Response of silicate weathering to temperature in CLIMBER-X stronger than in some previous studies

Spatially explicit weathering

рік

Atmospheric lifetime of anthropogenic CO₂

- Using the IRF, we determine a mean lifetime of 900 years across the different emission scenarios
- 10% of emissions persist for longer than 10 kyr, while 5% longer than 85 kyr

Part 2:

Timing of the next glacial cycle

The next glacial cycle

- Orbital parameters (therefore solar insolation) is known for the next ${\sim}20$ Myr
- Fundamental relationship between maximum summer insolation at 65°N and CO₂ concentration which can diagnose glacial inception

$$smx65_{cr} = -75 \log\left(\frac{CO_2}{280}\right) + 465$$

- Run similar experiments as before, but now with:
 - orbital parameters
 - different volcanic outgassings
 - without/with interactive ice sheets
- Uncertainties:
 - climate-carbon-ice sheet interactions

THE NEXT GLACIAL CYCLE Effect of the initial carbon state

- Volcanic outgassing is a tuneable parameter
- For initial conditions in the model spin-up, we need an assumption about the relationship between weathering rate and volcanic outgassing
- Balancing outgassing with LGC weathering rate leads to a steady decrease in CO₂ over the next 100 kyr
- Balacing outgassing with minimum weathering rate (LGM) leads to more than a 80 ppm difference in CO₂ over 100 kyr
- Important with interactive ice sheets as it will determine the timing of the next glacial cycle

THE NEXT GLACIAL CYCLE

Natural length of the current interglacial

- An imminent glacial inception could only occur at the next local minima in insolation (~500 yr AP) for CO₂ values lower than approximately 225 ppm
- A decrease of over 50 ppm would have to have occurred before 2500 CE for a Holocene glacial inception
- The estimated timing of the next glacial cycle under natural conditions could change from ~125 kyr AP to ~50 kyr AP depending on volcanic outgassing
- This latter value more accurately matches previous projections, meaning that an LGC volcanic outgassing is appropriate

THE NEXT GLACIAL CYCLE

Global warming and the next glacial cycle

- Glacial inception in the experiment with LGC outgassing would occur around ~50 kyr AP under present-day anthropogenic emissions (~500 PgC)
- Glacial inception under almost all emission scenarios occurs before 200 kyr irregardless of the chosen volcanic outgassing
- These results contest previous studies
- The reason for this is related to the strong silicate weathering feedback, significantly reducing the atmospheric lifetime of CO₂

THE NEXT GLACIAL CYCLE

Confirmation of our diagnosis

- We additionally run a set of experiments with the LGC volcanic outgassing which have the ice sheet model enabled for ~100 kyr; this would confirm our diagnosis and show ice sheet extent at the next glaciation
- Glacial inception, where ice volume grows larger than ~15 m sle, is only seen for the 0 and 500 PgC scenario (as expected)
- For emission scenarios over 1000 PgC, a rapid expansion of the ice sheet in the Canadian Arctic is not seen, and glacial inception is evaded

Conclusion

CONCLUSION

Summary & outlook

- Deep-future simulations have many uncertainties, but these can be partially addressed and explored
- CLIMBER-X is a powerful Earth system model which can be used to perform investigations that cannot be easily done with other state-of-the-art Earth system models, like
 - 1. Life time of anthropogenic CO_2 and sensitivity of the long-term carbon cycle response
 - 2. Future glacial cycles and the possible ice sheet extent and volume
 - 3. Speculative studies such as the plausibility of a hothouse Earth, and multi-millennial "worst-case" scenarios (not shown today)

Funded by:

