
Least Squares Error =
1

2
 

𝑖=1

𝑁=𝑛𝑚

𝑺𝒓𝒆𝒂𝒍(𝐝) − 𝑺𝒊(𝐝) 2

 
Optimal Transport Error = D

.
𝐈𝐂𝐃𝐒𝒓𝒆𝒂𝒍  −  𝐈𝐂𝐃𝐒𝒊  𝑑𝐝

𝑤ℎ𝑒𝑟𝑒 𝐈𝑪𝑫𝑺𝒓𝒆𝒂𝒍 𝑎𝑛𝑑 𝐈𝑪𝑫𝑺𝒊 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 𝑠𝑒𝑖𝑠𝑚𝑖𝑐 𝑑𝑎𝑡𝑎 (𝑆𝑎𝑚𝑏𝑟𝑖𝑑𝑔𝑒 𝑒𝑡 𝑎𝑙. , 2022)

Seismic Forward Modelling to Characterize Spatial Uncertainties of Geological 

Structures
Carlos Colombo1, Peter Achtziger-Zupančič2 and Florian Wellmann1

1 Chair of Computational Geoscience, Geothermics and Reservoir Geophysics, RWTH Aachen University, Aachen
2 Fraunhofer Research Institution for Energy Infrastructures and Geotechnologies, Aachen

Introduction

References
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Spatial uncertainty is critical in the design of underground nuclear waste storage sites as they must comply with specific safety distances to the boundaries of the 

selected geological structure to hold the site. This uncertainty is larger in areas where data is not available and interpolation among measured data is needed. We 

propose a method to identify the optimal variogram parameters from available seismic data. Starting from the seismic interpreted model of acoustic impedances, we 

produce perturbations by adding several realizations of a Gaussian field (produced with different range, sill and nugget parameters). We simulate their corresponding 

seismic data with forward modelling. By computing the error between the simulated and available seismic data, we are able to obtain the optimal variogram parameters 

to model the geological structure and use them to characterize its spatial uncertainty with sequential Gaussian simulation. The objective of the method is expected to 

identify the safest locations (if any) to place a storage site and, especially, characterize the spatial uncertainty between known measurements. 

INPUT DATA FORWARD MODELLING ERROR MEASURE

VARIOGRAM MODEL

The analysis starts with the seismic data of the 

subsurface region whose uncertainty we expect to 

characterize. We call these data “real seismic data”. 

At this stage of the study, we consider a 2D 

synthetic seismic section, in depth domain. We 

interpret the horizon it represents and create an 

acoustic impedance model.

By selecting 𝑛𝑚  (with 𝑛𝑚 = 10000  for least-

squares and 𝑛𝑚 = 500 for optimal transport errors, 

Sambridge et al., 2022) uniformly distributed 

random samples of variogram parameters (range, 

sill and nugget), we create 𝑛𝑚 realizations of a 

Gaussian field (with zero mean) and add them to 

the interpreted acoustic impedance model in step 

1. We obtain 𝑛𝑚  additional impedance models, 

whose corresponding seismic data (band-limited 

post-stack) are generated with forward modelling 

(PyLops Development Team, 2023).

By measuring the error between the real seismic 

section (step 1) and the 𝑛𝑚  forward-modelled 

realizations, we assign a likelihood value to each of 

them. After testing several methods, we use least-

squares and optimal transport (Sambridge et al., 

2022) to measure the errors. We obtain the 

probability distributions for each of the variogram 

parameters.

With the modelled variogram we perform sequential Gaussian simulation to characterize the uncertainty 

of the area, given the real seismic data in step 1.

We construct the 

variogram models 

from the distributions 

of the parameters 

found in previous step 

and used them in the 

next step for a 

sequential Gaussian 

simulation.
• Current work has already involve a real 2D section of seismic data.

• The distributions of the variogram parameters show periodicity that needs further investigation. 

• Optimal transport provides a more detailed error calculation, however its results are less stable (even with a 

closer model) and the uncertainty does not follow the interpreted boundary; further investigation is needed.

• The range needs to be of similar magnitude as the width of the section, as larger values can produce similar, 

non-unique perturbations, resulting in many range values providing indistinguishable results.

• Claerbout, J. F., November 17th, 2010. Basic Earth Imaging.

• Müller, S., Schüler, L., Zech, A., and Heße, F., 2022: GSTools v1.3: a toolbox for geostatistical modelling in Python, Geosci. Model Dev., 15, 3161–3182,

 https://doi.org/10.5194/gmd-15-3161-2022.

• PyLops Development Team, 2023. Post-stack Linear Modelling (pylops.avo.poststack.PoststackLinearModelling). 

https://pylops.readthedocs.io/en/v2.2.0/api/generated/pylops.avo.poststack.PoststackLinearModelling.html (last accessed January 24th, 2025).

• Ravasi M. and Vasconcelos I., January 2020. PyLops—A Linear-Operator Python Library for Scalable Algebra and Optimization. SoftwareX 11: 100361, https://doi.org/10.1016/j.softx.2019.100361.

• Sambridge M., Jackson A., and Valentine A. P., June 21st, 2022. Geophysical Inversion and Optimal Transport. Geophysical Journal International 231, n.º 1: 172-98, https://doi.org/10.1093/gji/ggac151.

CHARACTERIZATION OF SPATIAL UNCERTAINTY WITH SEQUENTIAL GAUSSIAN SIMULATION

Fig. 1: Synthetic seismic data (left) from the location whose 

uncertainty is expected to be characterized; along with its 

corresponding impedance model (middle) and horizon (right).
Fig. 2: Realizations of seismic data with forward modelling

Fig. 3: 

Distributions of 

variogram 

parameters for 

least-squares 

(above) and 

optimal transport 

(Sambridge et al., 

2022)(bottom).

Fig. 5: Modelled variograms, 

from least-squares (above) 

and optimal transport 

(Sambridge et al., 

2022)(bottom). Averages 

shown in bold lines.
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𝑺𝒊 = 𝐖𝑺𝒊 𝐝, θ = 0 = 𝑤 𝐝 ∗
𝑑 𝑙𝑛 𝑴𝒊 𝐝

𝑑𝐝

Method

Seismic data = 𝑺𝒓𝒆𝒂𝒍 𝐝

Acoustic Impedance = 𝑴𝒓𝒆𝒂𝒍 𝐝

where 𝐝 is a point 𝑛𝑑 , 𝑛𝑥  ∈  ℝ2;
with 𝑛𝑑 = 𝑛𝑥 = 0, 1 , … , 99

γ 𝐝 = nugget + sill − nugget 1.5
𝐝

range
− 0.5 −

𝐝
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3

𝑖𝑓 𝐝 < range, γ 𝐝 = sill otherwise

Fig. 6: Interpreted structure boundary (left) with its spatial uncertainty given by least-squares (middle) and optimal transport (Sambridge 

et al., 2022)(right). 
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Fig. 4: Comparison between the real seismic data from step 1 (left) 

and the best forward-modelled seismic data for least-squares 

(middle) and optimal transport errors (Sambridge et al., 2022)(right)
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