Seismic Forward Modelling to Characterize Spatial Uncertainties of Geological Structures

Carlos Colombo¹, Peter Achtziger-Zupančič² and Florian Wellmann¹

¹ Chair of Computational Geoscience, Geothermics and Reservoir Geophysics, RWTH Aachen University, Aachen ² Fraunhofer Research Institution for Energy Infrastructures and Geotechnologies, Aachen

Spatial uncertainty is critical in the design of underground nuclear waste storage sites as they must comply with specific safety distances to the boundaries of the selected geological structure to hold the site. This uncertainty is larger in areas where data is not available and interpolation among measured data is needed. We propose a method to identify the optimal variogram parameters from available seismic data. Starting from the seismic interpreted model of acoustic impedances, we produce perturbations by adding several realizations of a Gaussian field (produced with different range, sill and nugget parameters). We simulate their corresponding seismic data with forward modelling. By computing the error between the simulated and available seismic data, we are able to obtain the optimal variogram parameters to model the geological structure and use them to characterize its spatial uncertainty with sequential Gaussian simulation. The objective of the method is expected to identify the safest locations (if any) to place a storage site and, especially, characterize the spatial uncertainty between known measurements.

The analysis starts with the seismic data of the subsurface region whose uncertainty we expect to characterize. We call these data "real seismic data". At this stage of the study, we consider a 2D synthetic seismic section, in depth domain. We interpret the horizon it represents and create an acoustic impedance model.

> Seismic data $= S_{real} (\mathbf{d})$ Acoustic Impedance = M_{real} (d) where **d** is a point $(n_d, n_x) \in \mathbb{R}^2$; with $n_d = n_x = 0, 1, ..., 99$

Fig. 1: Synthetic seismic data (left) from the location whose uncertainty is expected to be characterized; along with its

By selecting n_m (with $n_m = 10000$ for leastsquares and $n_m = 500$ for optimal transport errors, Sambridge et al., 2022) uniformly distributed random samples of variogram parameters (range, sill and nugget), we create n_m realizations of a Gaussian field (with zero mean) and add them to the interpreted acoustic impedance model in step 1. We obtain n_m additional impedance models, whose corresponding seismic data (band-limited post-stack) are generated with forward modelling (PyLops Development Team, 2023).

By measuring the error between the real seismic section (step 1) and the n_m forward-modelled realizations, we assign a likelihood value to each of them. After testing several methods, we use leastsquares and optimal transport (Sambridge et al., 2022) to measure the errors. We obtain the probability distributions for each of the variogram parameters.

Least Squares Error
$$=\frac{1}{2}\sum_{i=1}^{N=n_m} (S_{real}(\mathbf{d}) - S_i(\mathbf{d}))^2$$

Optimal Transport Error = $\int_{D}^{1} |ICDS_{real} - ICDS_{i}| dd$ where **ICDS**_{real} and **ICDS**_i are the inverse cumulative distributions functions of the real and forward modelled seismic data (Sambridge et al., 2022)

corresponding impedance model (middle) and horizon (right).

Fig. 2: Realizations of seismic data with forward modelling

Generated Seismic with Lowest Error Generated Seismic with Lowest Error **Real Seismic Data Boundary** Least-squares **Opt. Transport** Fig. 4: Comparison between the real seismic data from step 1 (left) and the best forward-modelled seismic data for least-squares (middle) and optimal transport errors (Sambridge et al., 2022)(right) **VARIOGRAM MODEL** $\gamma(\mathbf{d}) = \text{nugget} + (\text{sill} - \text{nugget}) \left(1.5 \left(\frac{\mathbf{d}}{\text{range}} \right) - 0.5 \left(-\frac{\mathbf{d}}{\text{range}} \right)^3 \right)$ *if* $\mathbf{d} < \text{range}$, $\gamma(\mathbf{d}) = \text{sill otherwise}$ We construct the 100 80 variogram models Offset (m) from the distributions parameters the Of found in previous step and used them in the for next step Gaussian sequential simulation.

CHARACTERIZATION OF SPATIAL UNCERTAINTY WITH SEQUENTIAL GAUSSIAN SIMULATION

With the modelled variogram we perform sequential Gaussian simulation to characterize the uncertainty of the area, given the real seismic data in step 1.

Discussion & Future Work

- Current work has already involve a real 2D section of seismic data.
- The distributions of the variogram parameters show periodicity that needs further investigation.

- Optimal transport provides a more detailed error calculation, however its results are less stable (even with a closer model) and the uncertainty does not follow the interpreted boundary; further investigation is needed.
- The range needs to be of similar magnitude as the width of the section, as larger values can produce similar, non-unique perturbations, resulting in many range values providing indistinguishable results.

Fig. 5: Modelled variograms, from least-squares (above) and optimal transport (Sambridge et al., 2022)(bottom). Averages shown in bold lines.

References

- Claerbout, J. F., November 17th, 2010. *Basic Earth Imaging*.
- Müller, S., Schüler, L., Zech, A., and Heße, F., 2022: GSTools v1.3: a toolbox for geostatistical modelling in Python, Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022.
- PyLops Development Team, 2023. Post-stack Linear Modelling (pylops.avo.poststack.PoststackLinearModelling). https://pylops.readthedocs.io/en/v2.2.0/api/generated/pylops.avo.poststack.PoststackLinearModelling.html (last accessed January 24th, 2025).
- Ravasi M. and Vasconcelos I., January 2020. PyLops—A Linear-Operator Python Library for Scalable Algebra and Optimization. SoftwareX 11: 100361, https://doi.org/10.1016/j.softx.2019.100361.
- Sambridge M., Jackson A., and Valentine A. P., June 21st, 2022. Geophysical Inversion and Optimal Transport. Geophysical Journal International 231, n.º 1: 172-98, https://doi.org/10.1093/gji/ggac151.

