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4. Model Setup

1. Motivation

Physics-based impact models, describing future risks of radioactive contamination in repository
sites, are built in the presence of numerous uncertainties. To ensure a high level of predictive
accuracy, it is essential to address these uncertainties.

2) Im

*» Reliability Management:

1) Process Model

pact Model

3) Sensitivity Analysis

Assess which measurement would be most
beneficial to reduce uncertainty.

2. Theory

2.1 Process Model : Reactive Transport Equation:
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D, is pore diffusion coefficient.
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v=q/p ¢ is porosity,  Decayrate: A = 1
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N: Number of Radionuclides
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2.2 Impact Model : Accumulated Dose
» Absorbed Dose [Gray]: » Accumulated Dose:
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2.3 Sensitivity Analysis : Sensitivity Indices
 First-order Index: Ve (s (YIX)
Measures the contribution to the output S; = i l
variance by a single model input. V(Y)
« Second-order Index:
Measures the contribution to the output Vy. (Ex . (y| X, X-))
variance caused by the interaction of two = a2 At S;— S
model inputs. V(Y)
 Total Effect Index:
Measures the contribution to the output
variance caused by a model input, S —=1— VXNi(EXi (Y1X.)
accounting for its interactions with all other g — V()
factors.
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3. Yaml|2Solver Python Interface: A Python Interface for
Seamless Simulations

Yaml2Solver employs YAML files to define input parameters, enabling efficient adjustment of
values and consideration of various coupled processes.
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Yaml Files:

Yaml2Solver(main.yml \

Site fluid nuclide solver

Geometry Software
Material properties setup

A Functionality of Yaml2Solver

Qian Chen

chen@mbd.rwth-aachen.de

4.1 Leakage scenario:

N
. Nucldes > Accumulated Dose in Critical Regions:

Host rock Xmax
= D*(Tend) = f D(x, Tend) dx
Xmin
= = D*(Tend) — g(Ci(x; t)) = f(¢;,q9,D;,R;, ...)

» Uncertain Parameters:
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4.2 Sensitivity Analysis Through Smart Data Hub and Yaml2Solver:

@ Smart Data Hub:

Select site:
CH_MontTerri_OpalinusClay
lithostratigraphy
i
Phanerozoic Mesozoic shaly_faciesZ
shaly_facies2 dark grey, mostly mica and pyrite containing calcareous silty-sandy claystones.
heat _capacity scalar ~
specific_heat_capacity tabulated {293.15: 1040, 353.15: 1
heat conductivity parallel scalar
heat _conductivity perpendicular scalar
hydraulic_conductivity scalar
p_wave_velocity parallel scalar v
< >
Host Rock: Opalinus Clay Shaly Facies Extract
Uncertain
| Model Parameters: Parameters
D Main.yml: o
Uncertain Range Unit
Q site: Parameter
> S|te_na_me: ../../yarr}I-db/sn_es/Mont_TerrllMont_Terrl.ymI ANeeEaalilE (0.2, 0.4] i
» modelling_areas: ['Jurassic- porosity ¢,
Middle_Aalenian_OpalinusClay_shaly-facies1] :
Darcy flow g [0.1,1] mm/a
Q fluid: Effective diffusion |[1e-11, 1e-10] | m?/s
> type: ['water] coefficient D;
» fluid_properties: ['../..lyaml-db/fluid/default/water.yml’]
O nuclide: Genera‘[e
» nuclides_properties: ../../lyaml-
db/nuclide/Cm247 decay chain_OpalinusClay.yml Samples
> first_nuclide: Cm-247 Generate Y
> include_nuclides: [Cm-247','Am-243', 'Pu-239', 'U-235', 'Pa- Model a ™
231", "Ac-227] Evaluations >|
Q solver: ) SALlB
> 0gs_solver: o .
< simulation_setup: ../../yaml- \Sensitvity Analysis Libray (SALLE)/
db/sim_setup/ogs_sol setup.ymi

» analytical_solution:
s simulation_setup: ../../yaml-
db/sim_setup/analytical_sol setup.yml

Provide model

parameters | Solve process
g 2\ |and
impact models (
1 Result:
Yaml2Solver 1 Accumulated Dose in Critical Regions
NG %

5. Results and Conclusions

The sensitivity analysis was conducted utilizing three uncertain parameters. The base sample size was set
to 2048, resulting in a total of 16384 simulation runs.

er— le=6 « Scatterplots of accumulated dose within a

) critial region D" versus the porosity ¢, darcy
flow g and effective diffusion coefficient De.
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The results indicate that the effective diffusion coefficient is the most influential factor affecting accumulated
dose, while porosity has a minimal impact. Consequently, for future field experiments, it is advisable to
focus on setting up experiments that accurately estimate the diffusion coefficient to reduce uncertainty.
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