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Sensitivity Analysis of Radionuclide Transport and Radiation Dose 

Simulations

2. Theory

1. Motivation

3. Yaml2Solver Python Interface: A Python Interface for

Seamless Simulations

Physics-based impact models, describing future risks of radioactive contamination in repository 

sites, are built in the presence of numerous uncertainties. To ensure a high level of predictive 

accuracy, it is essential to address these uncertainties. 
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beneficial to reduce uncertainty.

❖ Reliability Management:

1) Process Model

2) Impact Model

3) Sensitivity Analysis
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Functionality of Yaml2Solver 
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Yaml2Solver employs YAML files to define input parameters, enabling efficient adjustment of 

values and consideration of various coupled processes. 

2.1 Process Model : Reactive Transport Equation:

2.2 Impact Model : Accumulated Dose
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• N is number of radionuclides

• a is activity 

➢ Accumulated Dose:
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➢ Accumulated Dose in 

     Critical Regions:
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(4) Radionuclide Decay (2) Diffusion

• 𝐷 =  𝜙𝐷𝑝

𝜙 is porosity,

𝐷𝑝 is pore diffusion coefficient. 

(5), (3)

(3) Adsorption

(1) Advection

• retardation factor:

𝑅 = 1 +
𝜌𝑏𝐾𝑑

𝜙
𝜌𝑏 is rock density

𝐾𝑑 is adsorption coefficient

• mean fluid velocity:

 𝑣 = 𝑞/𝜙 

• Darcy flux:

𝑞 = −
𝜅

𝜇
∇𝑝 − 𝜌𝑔

𝜅 is medium permeability,

𝜇 is fluid viscosity 

(5) Radionuclide Ingrowth

• Decay rate: 𝜆 =
𝑙𝑛2

𝑇1/2
,  𝑇1/2 is Half-life

2.3 Sensitivity Analysis : Sensitivity Indices

𝑆𝑖 =
𝑉𝑋𝑖

(𝐸𝑋~𝑖(𝑌|𝑋𝑖))
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• First-order Index: 

Measures the contribution to the output 

variance by a single model input.

• Second-order Index: 

• Total Effect Index:

Measures the contribution to the output 

variance caused by the interaction of two 

model inputs.
𝑆𝑖𝑗 =

𝑉𝑋𝑖,𝑗
(𝐸𝑋~𝑖,𝑗

𝑌 𝑋𝑖 , 𝑋𝑗 )

𝑉(𝑌)
− 𝑆𝑖 − 𝑆𝑗

Measures the contribution to the output 

variance caused by a model input, 

accounting for its interactions with all other 

factors. 
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𝑁: Number of Radionuclides 

𝑇1/2: Half-life

4. Model Setup
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➢ Accumulated Dose in Critical Regions:

4.1 Leakage scenario:

Nuclides

247Cm

15.6 My

243Am

7.37 Ky

239Pu

24.11 Ky
235U

0.704 By

231Pa

32.76 Ky

227Ac

21.772 y 𝐷∗ 𝑇𝑒𝑛𝑑 = න
𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥

𝐷 𝑥, 𝑇𝑒𝑛𝑑  𝑑𝑥

𝐷∗ 𝑇𝑒𝑛𝑑 = 𝑔 𝑐𝑖 𝑥, 𝑡 = 𝑓(𝜙𝑖 , 𝑞, 𝐷𝑖 , 𝑅𝑖 , … )

➢ Uncertain Parameters:

𝐷∗ 𝑇𝑒𝑛𝑑 = 𝑓(𝜙𝑖 , 𝑞, 𝐷𝑖) with 𝜙1 = 𝜙2 = ⋯ = 𝜙𝑁, 

       𝐷1 = 𝐷2 = ⋯ = 𝐷𝑁

Host rock

Opalinus Clay

4.2 Sensitivity Analysis Through Smart Data Hub and Yaml2Solver:

Smart Data Hub:

❑ site:
➢ site_name: ../../yaml-db/sites/Mont_Terri/Mont_Terri.yml

➢ modelling_areas: ['Jurassic-

Middle_Aalenian_OpalinusClay_shaly-facies1']

❑ fluid:
➢ type: ['water']

➢ fluid_properties: ['../../yaml-db/fluid/default/water.yml']

❑ nuclide:

➢ nuclides_properties: ../../yaml-
db/nuclide/Cm247_decay_chain_OpalinusClay.yml

➢ first_nuclide: Cm-247

➢ include_nuclides: ['Cm-247', 'Am-243', 'Pu-239', 'U-235', 'Pa-

231', 'Ac-227‘]

❑ solver:

➢ ogs_solver:

❖ simulation_setup: ../../yaml-

db/sim_setup/ogs_sol_setup.yml

➢ analytical_solution:
❖ simulation_setup: ../../yaml-

db/sim_setup/analytical_sol_setup.yml

Main.yml:

Model Parameters:

Yaml2Solver
Result: 

Accumulated Dose in Critical Regions

Host Rock:  Opalinus Clay Shaly Facies 

Uncertain 

Parameter

Range Unit

Accessible 

porosity 𝜙𝑖

[0.2, 0.4] -

Darcy flow 𝑞 [0.1,1] mm/a

Effective diffusion 

coefficient 𝐷𝑖

[1e-11, 1e-10] m2/s
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5. Results and Conclusions

The sensitivity analysis was conducted utilizing three uncertain parameters. The base sample size was set 

to 2048, resulting in a total of 16384 simulation runs. 

Scatterplots of accumulated dose within a 

critial region D*  versus the porosity 𝜙, darcy 

flow 𝑞 and effective diffusion coefficient 𝐷𝑒. 

First-, total- and second-order effects for 

porosity 𝜙, darcy flow 𝑞 and effective 

diffusion coefficient 𝐷𝑒. 

The results indicate that the effective diffusion coefficient is the most influential factor affecting accumulated 

dose, while porosity has a minimal impact. Consequently, for future field experiments, it is advisable to 

focus on setting up experiments that accurately estimate the diffusion coefficient to reduce uncertainty. 
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