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Training surrogate models using input dimension reduction for 

inverse modelling problems
Application to heterogeneous media problems

Motivation
Surrogate model training can become computationally prohibitive for high-dimensional, heterogeneous problems given that a) more training points

from computationally expensive models are needed and b) increased training time. Additionally, (Bayesian) inverse problems in high dimensions also

suffer from the curse of dimensionality and convergence problems.

We implement surrogate training approaches with input dimension reduction (IDR) and apply them for forward and (Bayesian) inverse applications

Our goal is to train surrogates for high dimensional problems, while optimizing the number of expensive model runs and accounting for any

uncertainty induced by the IDR.
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KLD truncation provides a smaller input

training space, but smoothens the

random field, and so provides less

information to the surrogate when used

as training inputs.

+ Fewer training points needed

- Higher uncertainty when using the    

surrogate for predictions

Dimension reduction of parameters 

using KLD
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Application to GW transport model

• We focus on noisy-surrogates(GP), which consider the “noise” due to IDR.

• We focus on surrogates that provide Gaussian distribution over the

surrogate predictions.

- Allows to include a surrogate-induced error for a more representative UQ

IDR-error „aware“ surrogate

Surrogate error „aware“ Bayesian inference
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Forward UQ: IDR error

Posteriors using surrogate models with MC + 

rejection sampling, considering surrogate error

• We quantify and visualize the

surrogate error compared to

the surrogate approximation

error.

• We train noisy/error-aware

surrogate surrogates with different

configurations, with different IDR

levels, and compare them in

validation

Bayesian inference

Posterior distributions obtained with full 

complexity model, using 3 posterior sampling 

approaches

• IDR, up to a certain number of coefficients, did not affect the 

surrogate’s ability to infer the true posterior

BVRox

• We use available (borehole) observations, at time step ti, to update prior

knowledge on uncertain parameters.

• Through Bayesian inference we can reduce the uncertainty associated to

future time step (ti+n) simulations, for forward and optimal experimental

design (OED) simulations


