Quantifying Uncertainty in Coupled-THM Integrity Analysis Origins of Uncertainty – From Data to Models

> Sibylle Mayr (BGR Hannover) Oliver Ernst (TU Chemnitz)

Moritz Poguntke (TU Chemnitz) Maximilian Bittens, Jan Thiedau (BGR Hannover) Thomas Nagel (TU Bergakademie Freiberg)

> URS Final Meeting February 5–7, 2025 Potsdam

Uncertain parameters in repository safety assessment

Challenges of uncertain physical parameters¹ for THM simulation:

- observations of crucial input parameters often indirect, always noisy
- spatial variability, anisotropy 🖙 Poster Aqeel Chaudry
- available data: often only best estimate, sometimes min, max, confidence interval
- original measurement values/conditions often not reported
- only independently determined values reported
- 🖙 Poster Sibylle Mayr

Parameter	Symbol/Unit	Min	Max	Mean	Std. Dev.	Distribution
Total thermal conductivity	$K/W m^{-1} K^{-1}$	1.29	2.45	1.79	0.34	Truncated normal
Total specific heat capacity	$C/J kg^{-1} K^{-1}$	774	1182	978	68	Normal
Total density	$\rho/\text{kg}\text{m}^{-3}$	2420	2540	2480	30	Truncated normal
Young's modulus	E/Pa	$5.5 \cdot 10^{9}$	$20.1 \cdot 10^{9}$	$12.8 \cdot 10^{9}$	$3.7 \cdot 10^{9}$	Truncated normal
Volumetric thermal expansion coefficient of solid skeleton	$a_{\rm s}/{\rm K}^{-1}$	$3 \cdot 10^{-5}$	$7.5 \cdot 10^{-5}$	$5.25 \cdot 10^{-5}$	-	Uniform
Intrinsic permeability	k_s/m^2	$7.8 \cdot 10^{-21}$	$2.2 \cdot 10^{-19}$	$5.6 \cdot 10^{-20}$	$5.5 \cdot 10^{-20}$	Truncated normal
Poisson's ratio	v/-	0.2	0.4	0.3	-	Triangular
Porosity	$\phi/-$	0.097	0.185	0.15	0.0276	Truncated normal

¹Aqeel Afzal Chaudhry, Jörg Buchwald, and Thomas Nagel. "Local and global spatio-temporal sensitivity analysis of thermal consolidation around a point heat source". In: *International Journal of Rock Mechanics and Mining Sciences* 139 (2021), p. 104662. DOI: 10.1016/j.ijrmms.2021.104662.

Case study: inferring thermal conductivity from observational data²

Depth observations of

- thermal conductivity λ
- Saturated measurements of λ difficult to obtain. Best estimate of λ ?

²Philipp Heidinger et al. "First results of geothermal investigations. Chesapeake Bay impact structure. Evreville core holes". In: The ICDP-USGS Deep Drilling Project in the Chesapeake Bav impact structure: Results from the Eyreville Core Holes. Geological Society of America, 2009. DOI: 10.1130/2009.2458(39).

Case study: inferring thermal conductivity from observational data²

²Philipp Heidinger et al. "First results of geothermal investigations, Chesapeake Bay impact structure, Eyreville core holes". In: *The ICDP-USGS Deep Drilling Project in the Chesapeake Bay impact structure: Results from the Eyreville Core Holes.* Geological Society of America, 2009. DOI: 10.1130/2009.2458(39).

Mayr (BGR) / Ernst (TU Chemnitz)

MeQUR Stats

January 2025, Potsdam 3 / 13

Case study: inferring thermal conductivity from observational data

Approach 1: Infer from porosity using mixing models and λ_S

Mayr (BGR) / Ernst (TU Chemnitz)

MeQUR Stats

Case study: inferring thermal conductivity from observational data

- Determine layer boundaries from porosity observations, mineralogy
- Obtain best fit via mixing model (AMCP) and expert judgment using temperature data.

Case study: inferring thermal conductivity from observational data

Allow for uncertainty in ϕ , λ_S , λ_F , q: 5×10^6 uniform Monte Carlo samples

HA	porosity	arithmetic mixing (AM)		AM critical porosity		geometric mixing		heat flow
		$\lambda_{\rm S}$	$\lambda_{\rm F}$	λ_{S}	$\lambda_{\rm F}$	λ_{S}	$\lambda_{\rm F}$	
0	0.380 0.460	1.82 3.38		1.9 4.0		3.28 5.67		
1	0.425 0.605	1.82 3.38		1.9 4.0		3.28 5.67		
2	0.580 0.640	1.82 3.38	0.6	$1.9 \dots 4.0$	0.6	2.98 5.20	0.6	0.0590.071
3	0.460 0.500	1.82 3.38		1.475 3.475		2.64 4.01		
4	0.300 0.400	1.981 3.679		$2.989 \dots 4.989$		3.13 3.98		

99th, 90th, 70th, 50th percentiles in each layer (AMCP) Example:
Poster Thermobase

Case study: inferring thermal conductivity from observational data

Approach 2: Invert T measurements for λ (based on T_{top} , q_{bottom})

Fourier's law + conservation of energy $\sim 1D$ boundary value problem relating $\lambda = \lambda(z)$ with T = T(z)

$$egin{aligned} & (\lambda T')' = 0, & z_0 < z < z_\infty, \ & T|_{z=z_0} = T_0, \ & \lambda T'|_{z=z_\infty} = q_\infty. \end{aligned}$$

Case study: inferring thermal conductivity from observational data

Approach 2: Invert T measurements for λ (based on T_{top} , q_{bottom})

Fourier's law + conservation of energy $\sim 1D$ boundary value problem relating $\lambda = \lambda(z)$ with T = T(z)

$$(\lambda T')' = 0, \qquad z_0 < z < z_{\infty},$$

 $T|_{z=z_0} = T_0,$
 $\lambda T'|_{z=z_{\infty}} = q_{\infty}.$

Given temperature measurements $\{T(z_j)\}_{j=1}^n$, estimate λ (piecewise constant) by least squares (LS) minimization

$$\sum_{j=1}^{n} [T(z_j; \lambda) - T_j]^2 \to \min_{\lambda},$$

Case study: inferring thermal conductivity from observational data

Comparison with mixing model

Case study: inferring thermal conductivity from observational data

Modeling uncertainty via Bayesian inference

Procedure:

- 1 Prior: model uncertain $\lambda = \lambda(z)$ as random function drawn from a probability distribution μ_0 on $C[z_0, z_\infty]$.
- 2 Data: inform prior distribution by incorporating temperature measurements $\{T(z_j)\}_{j=1}^n$.
- 3 Posterior: model reduced uncertainty in λ due to measurements by conditional distribution $\mu = \mu_0 |\{T(z_j)\}_{j=1}^n$
- 4 Statistics: infer statements on λ from statistics of posterior distribution such as posterior mean

$$\overline{\lambda} := \mathbf{E}_{\lambda \sim \mu} [\lambda]$$

Case study: inferring thermal conductivity from observational data

Modeling uncertainty via Bayesian inference

Prior distribution: Correlated Gaussians at layer centers

Case study: inferring thermal conductivity from observational data

Modeling uncertainty via Bayesian inference

Comparison of layer-wise UQ approaches: variation of 5 layer values of λ

Case study: inferring thermal conductivity from observational data

Bayesian inference in function space

Function space prior: Samples from Gaussian process on $[z_0, z_\infty]$ constant mean from data, correlation length 140 m

Case study: inferring thermal conductivity from observational data

Bayesian inference in function space

Posterior distribution: Posterior mean and variability prior with constant mean (no layer information)

Case study: inferring thermal conductivity from observational data

Bayesian inference in function space

Prior distribution: Samples from Gaussian process on $[z_0, z_\infty]$ discontinuous mean at 1 layer boundary

Case study: inferring thermal conductivity from observational data

Bayesian inference in function space

Posterior distribution: Posterior mean and variability last layer jump in prior

Case study: inferring thermal conductivity from observational data

Bayesian inference in function space

Posterior distribution: Posterior mean and variability

low-dimensional state space (smoother realizations)

Outlook

Data-Free Inference (Berry et al., 2012)

Is it enough to model each parameter independently?

0.4

0.3 Marginal density 0.2 0.1 0.0 ò _1 2 à 4 з 2 \mathbf{x} 1 0 $^{-1}$ $^{-1}$ -2 -2 0.0 0.1 0.2 0.3 Marginal density January 2025, Potsdam

Two bivariate normals with the same marginals.

Outlook

Data-Free Inference (Berry et al., 2012)

Is it enough to model each parameter independently?

$$\begin{bmatrix} X \\ Y \end{bmatrix} \mapsto \begin{bmatrix} X^2 - Y^2 \\ 2XY \end{bmatrix}$$

- Probabilistic assessment of parameter uncertainty
- Crucial for assessing variability of simulation inputs
- Combination of geological expertise and statistical computing³
- Model uncertainty in choice of mixing models

Ongoing:

- DFI to recover dependencies between uncertain parameters (allows reduction in parameter combinations)
- Neural networks for Bayesian posterior via conditional optimal transport

Save the date: Frontiers of Uncertainty Quantification in Subsurface Environments September 2026, TU Bergakademie Freiberg (GAMM AG UQ)

Thank you for your attention $~\odot$

³Sibylle I. Mayr et al. "Uncertainty-Guided Interpretation of Thermal Measurements in Sedimentary Units". In: *In preparation* (2025).

- Probabilistic assessment of parameter uncertainty
- Crucial for assessing variability of simulation inputs
- Combination of geological expertise and statistical computing³
- Model uncertainty in choice of mixing models

Ongoing:

- DFI to recover dependencies between uncertain parameters (allows reduction in parameter combinations)
- Neural networks for Bayesian posterior via conditional optimal transport

Save the date: Frontiers of Uncertainty Quantification in Subsurface Environments September 2026, TU Bergakademie Freiberg (GAMM AG UQ)

Thank you for your attention $~\odot$

³Sibylle I. Mayr et al. "Uncertainty-Guided Interpretation of Thermal Measurements in Sedimentary Units". In: *In preparation* (2025).

- Probabilistic assessment of parameter uncertainty
- Crucial for assessing variability of simulation inputs
- Combination of geological expertise and statistical computing³
- Model uncertainty in choice of mixing models

Ongoing:

- DFI to recover dependencies between uncertain parameters (allows reduction in parameter combinations)
- Neural networks for Bayesian posterior via conditional optimal transport

Save the date:

Frontiers of Uncertainty Quantification in Subsurface Environments September 2026, TU Bergakademie Freiberg (GAMM AG UQ)

Thank you for your attention $~\odot$

³Sibylle I. Mayr et al. "Uncertainty-Guided Interpretation of Thermal Measurements in Sedimentary Units". In: *In preparation* (2025).

- Probabilistic assessment of parameter uncertainty
- Crucial for assessing variability of simulation inputs
- Combination of geological expertise and statistical computing³
- Model uncertainty in choice of mixing models

Ongoing:

- DFI to recover dependencies between uncertain parameters (allows reduction in parameter combinations)
- Neural networks for Bayesian posterior via conditional optimal transport

Save the date:

Frontiers of Uncertainty Quantification in Subsurface Environments September 2026, TU Bergakademie Freiberg (GAMM AG UQ)

Thank you for your attention \bigcirc .

³Sibylle I. Mayr et al. "Uncertainty-Guided Interpretation of Thermal Measurements in Sedimentary Units". In: *In preparation* (2025).

References

Chaudhry, Aqeel Afzal, Jörg Buchwald, and Thomas Nagel. "Local and global spatio-temporal sensitivity analysis of thermal consolidation around a point heat source". In: *International Journal of Rock Mechanics and Mining Sciences* 139 (2021), p. 104662. DOI: 10.1016/j.ijrmms.2021.104662.

Heidinger, Philipp, Helmut Wilhelm, Yuri Popov, Jan Šafanda, Hans Burkhardt, and Sibylle Mayr. "First results of geothermal investigations, Chesapeake Bay impact structure, Eyreville core holes". In: *The ICDP-USGS Deep Drilling Project in the Chesapeake Bay impact structure: Results from the Eyreville Core Holes*. Geological Society of America, 2009. DOI: 10.1130/2009.2458(39).

Berry, Robert D., Habib N. Najm, Bert J. Debusschere, Youssef M. Marzouk, and Helgi Adalsteinsson. "Data-Free Inference of the Joint Distribution of Uncertain Model Parameters". In: *J. Comp. Phys.* 231 (2012), pp. 2180–2198. DOI: 10.1016/j.jcp.2011.10.031.

Robbe, Pieterjan, David Andersson, Luc Bonnet, et al. "Bayesian calibration with summary statistics for the prediction of xenon diffusion in UO_2 nuclear fuel". In: *Comp. Mat. Sci.* 225 (2023), p. 112184. DOI: 10.1016/j.commatsci.2023.112184.

Mayr, Sibylle I., Maximilian Bittens, Oliver G. Ernst, Moritz Poguntke, Jan Thiedau, and Thomas Nagel. "Uncertainty-Guided Interpretation of Thermal Measurements in Sedimentary Units". In: *In preparation* (2025).