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Research objectives

surface facilities

HL waste

▪ Facilitate transparency and reproducibility

Collect and integrate system uncertainty; 

analyze uncertainty impact

Our knowledge of the subsurface is 

governed by uncertainties!

Question: How can we disentangle 

uncertainties, hence manage reliability? 

▪ Decision support for data acquisition 

(overarching goal)

Assess which measurement would be most 

beneficial to reduce uncertainty

▪ Decision support for monitoring 

radioactive waste repository

Assess which measurements would be most 

beneficial for reliable monitoring

groundwater

dose isocontours

Fractures
Access shaft
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Key methodological building blocks

▪ Impact modeling 

orchestrates a workflow based on 

uncertainty informed geology, 

hydrothermal setting and impact scenario 

(nuclide transport) 

▪ Optimal experimental design

uses uncertainty-informed (impact) 

models to assess the value-add of 

surface probing and geophysical 

measurements

▪ Surrogate modeling 

constitutes an enabling technology for 

compute- intense tasks in impact 

modeling and optimal experimental 

design

Smart

Data Hub
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Framework

Fully 

parameterized 

reference model

Surrogate 

model training

(Surrogate) 

model 

responses

Uncertainty 

quantification

Parameter 

inference
Available 
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Uncertainty-

informed changes 

in geo(physical) 

parameters

Data Hub

Structural 

model 

geometries

Process-

relevant 

physical data

Uncertainty-informed 

Optimal Experimental 

Design

Optimized (multi-method) 

measurement schemes

Model inputs
Forward model 

runs
Model acceleration

Uncertainty 

quantification
Smart Monitoring 

strategies

Accumulated 

dose

Concentration 

fields
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The Need for a Smarter Data Management Tool

Common challenge:  Data findability!

We need material properties and uncertainties to feed into our models. 

Are we managing it in the most efficient way?

What if we could seamlessly integrate this data into simulation workflows?

data is structured,  accessible, and directly compatible with your simulations! 
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Core digital infrastructure

• Smart Data Hub

A FAIR approach to input/output data management 

idea: provides central instance to collect info on

- geological site, 

- material properties,

- subsurface geological model, 

- …

Smart

Data Hub

Data Exchange

provides uncertainty information as 
input for uncertainty management

facilitates 

traceability and reproducibility

starting point for data-integrated 
white-box impact model

Phase II Phase IIIPhase I
Post-

Closure 
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Smart Data Hub: Database

• Rock properties

YAML-DB

candidate

CH_MontTerri_OpalinusClay.yml

USA_Wipp_Rocksalt.yml

Sites

DE_Crystalline.yml

...

DE_Rocksalt.yml

s
y
n
th

e
tic

re
fe

re
n
c
e

sensible 

defaults

age_lithology

Cenozoic_Claystone.yml

Cenozoic_Limestone.yml

Mesozoic_Claystone.yml Mesozoic_Limestone.yml

Cenozoic_Sandstone.yml

Mesozoic_Sandstone.yml

Paleozoic_Sandstone.yml Paleozoic_Limestone.yml

Paleozoic_Sandstone.ymlPaleozoic_Claystone.yml

• Geomodel

+
save as plydata for 

Dashboard visualization

Example:

geometry/USA_Wipp_Rocksalt

Changhsingian.ply Tertiary.ply

Wuchiapingian-Lower.ply

Wuchiapingian-Middle.ply

Wuchiapingian-Upper.ply

Phase II Phase IIIPhase I
Post-

Closure 
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Smart Data Hub: Dashboard visualization

Phase II Phase IIIPhase I
Post-

Closure 

Live Demo

http://127.0.0.1:8050/
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Smart Data Hub: Publicly accessible via GitHub 

Smart Data Hub - A Data-Centric Approach for 

Integrated Simulation Workflow Management 

in Radioactive Waste Disposal

Contribution to a conference proceedings:

• DECOVALEX 2023, Troyes France

• EGU2024, Vienna Austria

• Research Data Day2024,  Julich Germany

Available in GitHub 

Paper in preparation

Smart

Data Hub

Phase II Phase IIIPhase I
Post-

Closure 
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Data need to be readily accessible

Visualization:
• GUI

Smart Data Hub

Database:
• rock properties with 

uncertainties

• sensible defaults

analysis-

readiness 

scenarios

fluid

Supply material

nuclide
Dynamic 

data 

update

python 

interface
python 

interface

python 

interface

python 

interface

Sim-Model Container

Impact 

Model

Surrogate 

Model

Geophysical 

model



URS Workshop | Smart Monitoring
13

Process and Impact models 

Phase II Phase III
Post-

Closure 
Phase I

• Claystone • Rock Salt
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Python interface between Smart Data Hub and OGS

Smart

Data Hub

Forward 

Solver

send ‘main’ to the Forward 

Solver

Python Interface

Yaml2Solver

• ogs

• ogs6py

• ogstools

• vtuinterface

Phase II Phase III
Post-

Closure 
Phase I

Poster 

Session
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Maria Fernanda Morales, Universität Stuttgart

My main points will be…

• URS needs surrogate models

• Surrogates have their own uncertainty

• Python package for surrogate model building and UQ

• Surrogates are challenging for models

• with many parameters 

• with many results

Surrogate Models in URS
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Surrogate Models: What and Why?

Highly 

detailed

geometry & 

processes
uncertain 

parameters

(Limited) 

forward model 

runs

What: substitute original models 

▪ Trained with few model runs

Why: run in a fraction of the time 

But: are approximations

 → have errors

 → We use surrogates that

      quantify their uncertainty

Model Surrogate

Surrogate 

model 

training
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Surrogate Models in Smart Monitoring & URS

Surrogate 

model 

training

Surrogate 

model 

outputs

Model 

calibration

Uncertainty 

quantification Optimal 

experimental 

design 

simulations

Phase II Phase IIIPhase I
Post-

Closure 

Highly 

detailed

geometry & 

processes

(Limited) 

forward model 

runs

uncertain 

parameters

Available 

observations
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Surrogate Model Python Package: BayesValidRox

https://pypi.org/project/bayesvalidrox/

Available in BayesValidRox 2.0

In progress

Paper in preparation

Website with documentation

BVRox

Phase II Phase IIIPhase I
Post-

Closure 

Easy all-in-one Bayesian toolbox for: 

• Surrogate model building 

− Optimizes model structure 

− Optimizes selection of original model runs (Active Learning)

• Uncertainty quantification and sensitivity analysis

• Bayesian model calibration

• Model comparison
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• Surrogate training needs model runs with selected parameter combinations.

What’s the problem with “high-dimensional” inputs?

Search space 1D: 10 Search space 2D: 102 Search space 3D: 103

• More parameters are “exponentially bad” (10, 100, 1000 parameters?)

• Our approach: Input dimension reduction for surrogate training

− There is an error associated to it, which we must consider during training and use of the surrogate



URS Workshop | Smart Monitoring
23

To the rescue: “input dimension reduction”

Goal: Find a smaller combination of parameters that represent most of the original parameter variability

• Examples: PCA, SVD as in PEST, VAE 

− Makes surrogate building cheaper 

• Quantify the uncertainty through input reduction together with all other uncertainties → see our poster

BVRox

High dimensional 

problem

Input dimension 

reduction (IDR) 

approach

Surrogate training 

on reduced inputs

Phase II Phase IIIPhase I
Post-

Closure 
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To the rescue: “input dimension reduction”

Goal: Find a smaller combination of parameters that represent most of the original parameter variability

• Examples: PCA, SVD as in PEST, VAE 

− Makes surrogate building cheaper 

• Quantify the uncertainty through input reduction together with all other uncertainties → see our poster

BVRox

High dimensional 

problem

Input dimension 

reduction (IDR) 

approach

Surrogate training 

on reduced inputs

Phase II Phase IIIPhase I
Post-

Closure 
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To the rescue: “input dimension reduction”

Goal: Find a smaller combination of parameters that represent most of the original parameter variability

• Examples: PCA, SVD as in PEST, VAE 

− Makes surrogate building cheaper 

• Quantify the uncertainty through input reduction together with all other uncertainties → see our poster

BVRox

High dimensional 

problem

Input dimension 

reduction (IDR) 

approach

Surrogate training 

on reduced inputs

Phase II Phase IIIPhase I
Post-

Closure 

Methodologies presented in EGU20241 and GeoEnv20242 conferences 

and 1 paper publication1 

Paper and technical note in preparation

1 Morales Oreamuno MF, Oladyshkin S, Nowak W. Error-aware surrogate modelling with input dimension reduction for groundwater modelling in 

heterogeneous media. In: Geophys Res Abstr. Vienna: EGU General Assembly 2024; (Geophys. Res. Abstr.; Bde. 26, EGU24-12586).

2 Morales Oreamuno MF, Oladyshkin S, Nowak W. Training surrogate models using input dimension reduction and Bayesian active learning 

techniques for inverse modelling in heterogeneous media applications. In: geoENV2024 Book of Abstracts. Chania, Crete, GR:; 2024. S. 191--192. 

(geoENV2024 Book of Abstracts).

3 Kröker I, Brünnette T, Wildt N, Oreamuno MFM, Kohlhaas R, Oladyshkin S, u. a. Bayesian3 Active Learning for Regularized Multi-Resolution 

Arbitrary Polynomial Chaos using Information Theory. International Journal for Uncertainty Quantification. September 2024;
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What’s the problem with “high-dimensional” OUTPUTS?

• When we have outputs on a 2D/3D grid and over time → large number of outputs 

• Potential problems: 

• Each output/cell = 1 individual surrogate

• Computationally expensive to train and to evaluate 

• For optimal experimental design you need the space/time resolution 

 
Phase II Phase IIIPhase I

Post-

Closure 
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• Goal: smaller representation of our outputs (like a ZIP file): 

− Example: PCA, SVG, VAE 

• Accelerate OED simulations 

• See our joint poster

To the rescue: “OUTPUT dimension reduction”

1. ZIP your problem 3. Un-ZIP your problem2. Do everything on ZIP level

Surrogate model building

UQ

Model calibration

Work in progress
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Nino Menzel, GIM, RWTH Aachen

My main points will be…

• URS needs smart monitoring strategies

• We use process-aware optimization strategies

• Survey optimization strategies are applicable to 

• surface exploration

• subsurface exploration and process transport monitoring

Smart Data Acquisition in URS
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▪ “Smart” data acquisition aims at reaching the 

point of maximum benefit as fast as possible

▪ Benefit of a survey: resulting net increase in 

resolution of model parameters of interest

▪ Overall goal: limit the amount of acquired data 

(and variable survey cost) without drastically 

reducing information content

▪ In our case: effective monitoring of fluid 

transport processes using (geo-)physical 

surveys

Smart Data Acquisition – Overall Concept
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Reference 

scenario

Previous

monitoring

time steps

Physical 

parameters

Process-

aware 

measurement 

optimization

Optimized 

measurement 

setup

Input from 

DataHub
Modelling in pyGIMLi & OED software package (in preparation at GIM)

Output to 

DataHub

Transport 

model 

(results)

Performed for every time step in the monitoring process

YAML files

Simulation of

(geo)physical 

measurements

Smart Data Acquisition – Workflow

Data-driven

Model-driven
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Inputs:

▪ A-priori information of the target area in the 

subsurface (transport process: hydr. 

parameters; geological structure: geometrical 

parameters)

▪ “Small” base measurement setup
▪ Seismic tomography survey with 40 receivers and 5 

shot points

▪ Geoelectric survey using 20 electrodes

▪ Densest possible measurement setup 

(comprehensive dataset)
▪ Seismic tomography survey with n receivers and m 

shot points

▪ Geoelectric survey with n electrodes x (km)

Phase II Phase IIIPhase I
Post-

Closure 

Smart Data Acquisition – Methodology
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Apply surrogate 

models to selected 

reference scenarios

Model responses of 

surrogate process

models

Uncertainty-informed 

changes in 

(geo)physical 

parameters

Definition of process-

affected areas

Simulation of 

(geo)physical

measurements

Uncertainty-informed

Optimized

Experimental Design 

(OED)

Petrophysical relation 

process model –

geophysical 

parameters

Optimized (multi-

method) measurement 

schemes

Uncertainty 

quantification

Iterative

Phase II Phase IIIPhase I
Post-

Closure 

Smart Data Acquisition – Optimization Strategy
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▪ Optimization algorithms consider underlying 

transport process

▪ Focusing of data acquisition on area that is affected 

by transport process

▪ Include parameter uncertainties in focusing

▪ Multiple model runs with different physical 

parameter sets

▪ Consider uncertainties during optimization

▪ Utilize both model predictions and inverse model of 

acquired data to evaluate simulation quality 

and adjust underlying transport model if 

necessary

Phase II Phase IIIPhase I
Post-

Closure 

Smart Data Acquisition – Transport Process Monitoring Example
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▪ Optimization algorithms consider underlying 

transport process

▪ Focusing of data acquisition on area that is affected 

by transport process

▪ Include parameter uncertainties in focusing

▪ Multiple model runs with different physical 

parameter sets

▪ Consider uncertainties during optimization

▪ Utilize both model predictions and inverse model of 

acquired data to evaluate simulation quality 

and adjust underlying transport model if 

necessary

▪ Process information can come from any transport 

simulator and/or real-time monitoring data

Phase II Phase IIIPhase I
Post-

Closure 

Smart Data Acquisition – Transport Process Monitoring Example
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▪ Optimization algorithms consider underlying 

transport process

▪ Focusing of data acquisition on area that is affected 

by transport process

▪ Include parameter uncertainties in focusing

▪ Multiple model runs with different physical 

parameter sets

▪ Consider uncertainties during optimization

▪ Utilize both model predictions and inverse model of 

acquired data to evaluate simulation quality 

and adjust underlying transport model if 

necessary

▪ Process information can come from any transport 

simulator and/or real-time monitoring data

Phase II Phase IIIPhase I
Post-

Closure 

Menzel, N. and Uhlemann, S. and Wagner, F. M. (2024):

Strategies for geoelectrical monitoring of subsurface fluid

transport processes using Optimized Experimental Design.

EGU General Assembly, Vienna, 14-19 April 2024.

84. Jahrestagung der Deutschen Geophysikalischen

Gesellschaft, 10.-14. März, Jena.

Paper in internal review

Smart Data Acquisition – Transport Process Monitoring Example
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OED can also be applied to focus surveys on 

static targets, e.g. geological features

▪ Optimize positions of sensors for surface or 

borehole exploration

▪ Optimize length and orientation of geophysical 

surface and borehole surveys

▪ Goal: increase coverage of measurements in 

targeted area

Phase II Phase IIIPhase I
Post-

Closure 

BGE, 2023

Smart Data Acquisition – OED for Site Exploration
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Key takeaways:

• Smart Data Hub provides analysis-ready data with uncertainties that seamlessly integrate with 

simulation workflows

• Surrogate models enable uncertainty quantification for computationally expensive models

• Method-agnostic and process-aware “Smart monitoring” strategies are key for resource-efficient and 

reliable data acquisition.

• Surrogates enable uncertainty-aware OED methodologies, which require a large number of model runs

Key Takeaways
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Thank you for your attention!

BayesValidRox

maria.morales@iws.uni-stuttgart.de 
Smart Data Hub

chen@mbd.rwth-aachen.de 

SmartDOT

nino.menzel@gim.rwth-aachen.de

http://chen@mbd.rwth
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