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»

Research objectives ‘

surface facmﬁesx ‘ Our knowledge of the subsurface is

governed by uncertainties!

Question: How can we disentangle
uncertainties, hence manage reliability?

= Facilitate transparency and reproducibility
Collect and integrate system uncertainty;
analyze uncertainty impact

= Decision support for data acquisition

(overarching goal)
Assess which measurement would be most

beneficial to reduce uncertainty

= Decision support for monitoring

- radioactive waste repository
groundwater _
Assess which measurements would be most
beneficial for reliable monitoring
3 RWNTH
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Key methodological building blocks

= |Impact modeling
orchestrates a workflow based on
uncertainty informed geology,
hydrothermal setting and impact scenario
(nuclide transport)

= Optimal experimental design e
uses uncertainty-informed (impact)
models to assess the value-add of
surface probing and geophysical
measurements

Smart
Data Hub

RWTH Aachen
GIM

University of

= Surrogate modeling Stuttgart

constitutes an enabling technology for
compute- intense tasks in impact
modeling and optimal experimental
design

URS Workshop | Smart Monitoring : University of Stuttgart




Framework
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measurement schemes

Uncertainty Smart Monitoring
quantification strategies

URS Workshop | Smart Monitoring

University of Stuttgart




The Need for a Smarter Data Management Tool MBD

@ We need material properties and uncertainties to feed into our models.

Q Common challenge: Data findability!

’) Are we managing it in the most efficient way?
[

? What if we could seamlessly integrate this data into simulation workflows?

data is structured, accessible, and directly compatible with your simulations!

URS Workshop | Smart Monitoring ﬁ University of Stuttgart nwrl.l
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Core digital infrastructure

* Smart Data Hub Data Exchange
A FAIR approach to input/output data management
idea: provides central instance to collect info on
- geological site,
- material properties,
- subsurface geological model,

Smart

starting point for data-integrated Data Hub

white-box impact model

University of RWTH Aachen
Stuttgart GIM

provides uncertainty information as
input for uncertainty management

facilitates
traceability and reproducibility

7
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Smart Data Hub: Database

Rock properties Sites

e

__B| DE_Crystalline.yml age_lithology

JlldYUAS

__bl DE_Rocksalt.yml : sensible D Cenozoic_Claystone.yml DCenozoic_Sandstone,ymI
- defaults
__________________ _> _—

[] Cenozoic_Limestone.ym [ Mesozoic_Sandstone.yml

D Mesozoic_Claystone.yml D Mesozoic_Limestone.yml

aoualajal

D Paleozoic_Claystone.ymi D Paleozoic_Sandstone.yml

B
EE

e (Geomodel

D Paleozoic_Sandstone.yml D Paleozoic_Limestone.yml

geometry/USA_ Wipp_Rocksalt

Example:
Lo

save as plydata for

D Changhsingian.ply D Tertiary.ply
Dashboard visualization

D Wuchiapingian-Lower.ply

GemPy

[ Wuchiapingian-Middle.ply

D Wuchiapingian-Upper.ply

URS WorkShOp | Smart Monitoring > Phase | > Phase Il > Phase llI
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Smart Data Hub: Dashboard visualization

Live Demo

®  URS Workshop | Smart Monitoring > Phasel > Phasell > Phasell University of Stuttgart RWNTH



http://127.0.0.1:8050/

P2
Smart Data Hub: Publicly accessible via GitHub MBD

Smart Data Hub - A Data-Centric Approach for
Integrated Simulation Workflow Management
in Radioactive Waste Disposal

Contribution to a conference proceedings:

- DECOVALEX 2023, Troyes France
« EGU2024, Vienna Austria
 Research Data Day2024, Julich Germany

University of RWTH Aachen
Stuttgart GIM
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Data need to be readily accessible

python
interface

-
( analysis- 7 interface
Database: > readiness
« rock properties with Lscenarios J

uncertainties
* sensible defaults
w “v

Visualization:

LN ] ‘ “
. GUI Python ot
\/ interface o*° .*
“ “

4 )
Dynamic

data
update

Sim-Model Container

|
interface
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Process and Impact models
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Python interface between Smart Data Hub and OGS

Smart
Data Hub

Python Interface
Yaml2Solver

* 0gs

* 0gsbpy

* ogstools

* vtuinterface

Forward
Solver

OpenGeoSys

OPEN SOURCE MULTIPHYSICS

send ‘main’ to the Forward
Solver

Poster
Session
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Surrogate Models in URS ALS?

Maria Fernanda Morales, Universitat Stuttgart

My main points will be...
* URS needs surrogate models
« Surrogates have their own uncertainty
« Python package for surrogate model building and UQ

* Surrogates are challenging for models
« with many parameters

* with many results

URS Workshop | Smart Monitoring ﬁ University of Stuttgart Rwrl.l
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Surrogate Models: What and Why?

ALS?®

Model Surrogate  What: substitute original models
= Trained with few model runs
" Highly )
detailed o\ £ ) Why: run in a fraction of the time
geometry & Surrogate But: are approximations
processes model - have errors
uncertain | UTEHTITLG > We use surrogates that
\_ parameters /,,:;;::Sff: """" quantify their uncertainty
forward model £
runs i * b
N J |

Uncertain parameter (Kd)

19
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Surrogate Models in Smart Monitoring & URS s ‘

" Highly )

detailed £ N (s N
geometry & Surrogate Urrodgal e ) ( Uncertainty ‘,:1_\
processes tm (_)d_el B = ? el‘ L quantification J""“‘::I:::;; .... \ Optimal
' rainin outputs .| - _
uncertain A g ) U N experimental
\ parameters ) - N design
f"::: ”””” oncentration at time ] \\::‘:_41 ,——"':‘—:—‘::’1 SimUIationS
~ N e Available |~ f Model ‘l—;,:: —————— \ <
. ® Trainigg po?nts QbseNationS 1T ( Callbratlon J
forward model £
runs |
K j 8 ol ) ,,.',

Uncertain parameter (Kd)

University of Stuttgart RWTH
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AL S3 Y
Surrogate Model Python Package: BayesValidRox o M LS “

Easy all-in-one Bayesian toolbox for: ° Available in BayesValidRox 2.0

- Surrogate model building Website with documentation
— Optimizes model structure
; Of rpogress
— Optimizes selection of original model runs (Active Learning) Paper in preparation

Uncertainty quantification and sensitivity analysis

Bayesian model calibration

Model comparison

https://pypi.org/project/bayesvalidrox/

URS WorkShop | Smart Monitoring > Phase | > Phase Il >> Phase Ill ;E%:%:;EE; Ul‘li\fersity Of Stuﬁgaﬂ nm

- -
» -
............
''''''''
-----
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What’s the problem with “high-dimensional” inputs? »s

» Surrogate training needs model runs with selected parameter combinations.

............

Search space 1D: 10 Search space 2D: 102 Search space 3D: 103

* More parameters are “exponentially bad” (10, 100, 1000 parameters?)
* Our approach: Input dimension reduction for surrogate training

— There is an error associated to it, which we must consider during training and use of the surrogate

22
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ALS® %
To the rescue: “input dimension reduction” A%L — “

. . , Input dimension
High dimensional N reduction (IDR)

N Surrogate training
problem approach

on reduced inputs

Concentration at time t
{(»J = #of grid cells

......... 7| =—- Surrogate prediction
@ Training points

nnnnnnnnn

.........

0 5 10 15 20 e
X [m] " N

Uncertain parameter (Kd)

Goal: Find a smaller combination of parameters that represent most of the original parameter variability
« Examples: PCA, SVD as in PEST, VAE

— Makes surrogate building cheaper

* Quantify the uncertainty through input reduction together with all other uncertainties -> see our poster

> URS Workshop | Smart Monitoring RWTH

S5 University of Stuttgart




ALS® %
To the rescue: “input dimension reduction” A%L — “

. . , Input dimension
High dimensional N reduction (IDR)

N Surrogate training
problem approach

on reduced inputs

Concentration at time t
{(»J = #of grid cells

......... 7| =—- Surrogate prediction
@ Training points

nnnnnnnnn

.........

0 5 10 15 20 e
X [m] " N

Uncertain parameter (Kd)

Goal: Find a smaller combination of parameters that represent most of the original parameter variability
« Examples: PCA, SVD as in PEST, VAE

— Makes surrogate building cheaper

* Quantify the uncertainty through input reduction together with all other uncertainties -> see our poster

** URS Workshop | Smart Monitoring RWTH

S5 University of Stuttgart




ALS® %
To the rescue: “input dimension reduction” A%L — “

Input dimension

High dimensional -
problem Methodologies presented in EGU2024" and GeoEnv2024? conferences

and 1 paper publication’

------- Paper and technical note in preparation

....... ' Morales Oreamuno MF, Oladyshkin S, Nowak W. Error-aware surrogate modelling with input dimension reduction for groundwater modelling in
------- heterogeneous media. In: Geophys Res Abstr. Vienna: EGU General Assembly 2024; (Geophys. Res. Abstr.; Bde. 26, EGU24-12586).
------ 2Morales Oreamuno MF, Oladyshkin S, Nowak W. Training surrogate models using input dimension reduction and Bayesian active learning
****** techniques for inverse modelling in heterogeneous media applications. In: geoENV2024 Book of Abstracts. Chania, Crete, GR:; 2024. S. 191--192.
X [m] (geoENV2024 Book of Abstracts).

3Kroker I, Briinnette T, Wildt N, Oreamuno MFM, Kohlhaas R, Oladyshkin S, u. a. Bayesian3 Active Learning for Regularized Multi-Resolution
Arbitrary Polynomial Chaos using Information Theory. International Journal for Uncertainty Quantification. September 2024;

Goal: Find a smaller combination of p
« Examples: PCA, SVD as in PEST, VAE
— Makes surrogate building cheaper

* Quantify the uncertainty through input reduction together with all other uncertainties -> see our poster

=2 University of Stuttgart
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Z) cim

ALS®
What’s the problem with “high-dimensional” OUTPUTS? h “

« When we have outputs on a 2D/3D grid and over time - large number of outputs

0 17.57 "_IE“
£
g ) . 13.18 9
E 5
= 8.79 'E
> 10 - —
4.39 “-f
i
a
=15 T T T T T T T T 0 u

0 5 10 15 20 25 30 35 40 45

xinm

* Potential problems:
- Each output/cell = 1 individual surrogate
- Computationally expensive to train and to evaluate

* For optimal experimental design you need the space/time resolution

26 L PR . .
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Z) cim

) i ] ALS?® A ‘
To the rescue: “OUTPUT dimension reduction” Kvm
0 Resistivity difference - Original field . ‘ Resistivity difference - Surrogate output 253
N Y g | i Surrogate model building | [ -
- A — 0a — 4y
[ Model calibration N 2
[ 1. ZIP your problem ] [2. Do everything on ZIP level ] [ 3. Un-ZIP your problem ]

« Goal: smaller representation of our outputs (like a ZIP file):

— Example: PCA, SVG, VAE Work in progress

* Accelerate OED simulations

« See our joint poster

27
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Z) Gim

Smart Data Acquisition in URS Kﬁu ‘

Nino Menzel, GIM, RWTH Aachen

My main points will be...
* URS needs smart monitoring strategies
* We use process-aware optimization strategies

« Survey optimization strategies are applicable to
« surface exploration

« subsurface exploration and process transport monitoring

*® URs Workshop | Smart Monitoring ﬁ University of Stuttgart Rwrl.l



Z) Gim

Smart Data Acquisition — Overall Concept Kﬁu ‘

A ) 10 = “Smart” data acquisition aims at reaching the

Masimum benefit point of maximum benefit as fast as possible

= Benefit of a survey: resulting net increase in
resolution of model parameters of interest

o
o]

Normalized survey goodness

Diminishing returns

= Overall goal: limit the amount of acquired data
(and variable survey cost) without drastically
reducing information content

Benefit
=)
(e)]

©
~

= |n our case: effective monitoring of fluid
transport processes using (geo-)physical
surveys

o
N

Variable costs

Survey costs

2 RWTH

URS Workshop | Smart Monitoring
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Z) aim

Smart Data Acquisition — Workflow Kﬁ%‘

/ Reference \ Performed for every time step in the monitoring process

scenario \\ \
Model-driven

.2

YAML files P
rocess-
: Optimized
Physical aware > me:surement
\ parameters / measurement —
/ optimization P

Data-driven
Transport /
model
(results) \ /

Input from
DataHub

Output to

‘ Modelling in pyGIMLi & OED software package (in preparation at GIM) DataHub

30
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Z) Gim

Smart Data Acquisition — Methodology Kﬁu ‘

Inputs: Surface view of survey sensor spread

20 1 [ ] [ ] [ ) ] °

= A-priori information of the target area in the
subsurface (transport process: hydr.
parameters; geological structure: geometrical i

parameters)

= “Small” base measurement setup
= Seismic tomography survey with 40 receivers and &5
shot points
= Geoelectric survey using 20 electrodes

y (km)
o

= Densest possible measurement setup
(comprehensive dataset)
= Seismic tomography survey with n receivers and m
shot points - ; - - -
) : 0 5 10 15 20
= Geoelectric survey with n electrodes x (km)

31
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Z) Gim

- ey .. . O\
Smart Data Acquisition — Optimization Strategy KVM ‘
4 ) . . 4 )
Model responses of _ ASel R el Optimized (multi-
Uncertainty process model —
surrogate process quantification conhvsical method) measurement
models % arg m}; tors schemes
. , . y,
Apply surrogate rUncertainty—informed\ - rUncertainty—informed\
- erative imi
»| models to selected —> SHEITEIED n < Qp Dlecs :
: (geo)physical Experimental Design
reference scenarios arameters (OED)
" Y, - Y,
_ Simulation of
Definition of process- . (geo)physical
affected areas geo)pny
measurements

32
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Z) Gim

Smart Data Acquisition — Transport Process Monitoring Example K‘m ‘

= Optimization algorithms consider underlying
transport process

o
iy
o

= Focusing of data acquisition on area that is affected E
by transport process =
a

o

Concentration (mg/L)

o N o~
3]

= Include parameter uncertainties in focusing 0 0 20 30 40 50 60
= Multiple model runs with different physical Profile length (m)
parameter sets
= Consider uncertainties during optimization

= Utilize both model predictions and inverse model of
acquired data to evaluate simulation quality
and adjust underlying transport model if
necessary

33
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_/ GIM

Smart Data Acquisition — Transport Process Monitoring Example Vm “
Concentration distribution, &; =
= Optimization algorithms consider underlying 0 05
transport process % =5 ‘ ;5;;
S -10- 55 O
* Focusing of data acquisition on area that is affected - 15 | | | | | 0' 8
by transport process 0 10 20 30 40 50 60 =

Profile length (m)

= |[nclude parameter uncertainties in focusing " Relative resolution Wenner array, n=40 : 3
= Multiple model runs with different physical 0.75 5
parameter sets 0is %
= Consider uncertainties during optimization 0.25 &
o &

0 10 20 30 40 50
Profile length (m)

N
o

= Utilize both model predictions and inverse model of
acquired data to evaluate simulation quality

and adjust underlying transport model if o Relative resolution optlmlzed array, n=20 ;o

— W EEA NNV > < ~

necessa - 7 5
Y E 5 0.75 9

: : =1 0.5 5

= Process information can come from any transport g -10 _ . 025 ©
simulator and/or real-time monitoring data _15 Rrin targetarcaifl W | 3

0 10 20 30 40 50 60
Profile length (m)

*  URS Workshop | Smart Monitoring University of Stuttgart




Z) aim

.2

e e ZAVAN

Smart Data Acquisition — Transport Process Monitoring Example KV&
0 Concentration distribution, &; 10 )
= Optimization algorithms consider underlying _ g
transport process £ s . 35
£ 5 &
. _— . o ~101 2.5 o
= Focusing of data acquisition on area that is affected Q ; O

by transport process
Menzel, N. and Uhlemann, S. and Wagner, F. M. (2024):

Include parameter uncertainties in focusing Strategies for geoelectrical monitoring of subsurface fluid

= Multiple model runs with different physical transport processes using Optimized Experimental Design.
parameter sets

= Consider uncertainties during optimization EGU General Assembly, Vienna, 14-19 April 2024.

84. Jahrestagung der Deutschen Geophysikalischen

Utilize both model predictions and inverse model of Gesellschaft, 10.-14. Mérz, Jena.

acquired data to evaluate simulation quality
and adjust underlying transport model if Paper in internal review
necessary

i
N o

Process information can come from any transport
simulator and/or real-time monitoring data

(3]
Rel. resolu

R in target area: 0.7

0 10 20 30 40 50 60
Profile length (m)

o
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Smart Data Acquisition — OED for Site Exploration

Z) cim
i

OED can also be applied to focus surveys on
static targets, e.g. geological features

= Optimize positions of sensors for surface or
borehole exploration

= Optimize length and orientation of geophysical

surface and borehole surveys

= Goal: increase coverage of measurements in

targeted area

— 400

8.4e+02
0 g
v ot
- o0 8
-400
BGE, 2023 .
7.80+02
36 o
URS Workshop | Smart Monitoring Phase Il Phase Il RWTI.IAACHEN

University of Stuttgart UNIVERSITY



Key Takeaways

Key takeaways:

Smart Data Hub provides analysis-ready data with uncertainties that seamlessly integrate with

simulation workflows

Surrogate models enable uncertainty quantification for computationally expensive models

Method-agnostic and process-aware “Smart monitoring” strategies are key for resource-efficient and

reliable data acquisition.

Surrogates enable uncertainty-aware OED methodologies, which require a large number of model runs

37

URS Workshop | Smart Monitoring ﬁ University of Stuttgart Rwrl.l



Thank you for your attention!

Smart Data Hub BayesValidRox SmartDOT
chen@mbd.rwth-aachen.de maria.morales@iws.uni-stuttgart.de nino.menzel@gim.rwth-aachen.de
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