

BUNDESGESELLSCHAFT FÜR ENDLAGERUNG

ASSESSING THE SUBSURFACE UNCERTAINTY IN THE SCREENING PHASE OF THE SITE SELECTION PROCEDURE

Screening the subsurface for a geological repository location for high-level radioactive waste

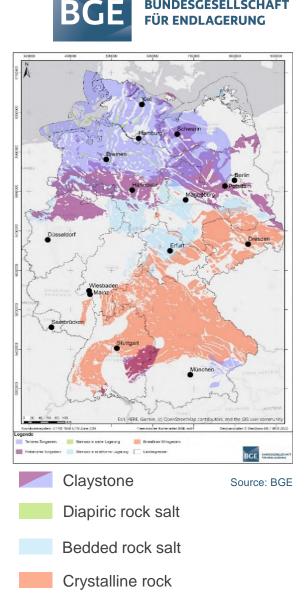
DR. CHRISTIAN DERER,

DR. DOROTHEA REYER, CHRISTIAN SANDER, DR. JENNIFER KLIMKE, DR. ALEXANDRA KOPPELBERG, DR. ALEXANDER RAITH, JULIA RIENÄCKER-BURSCHIL, DR. PHILLIP KREYE

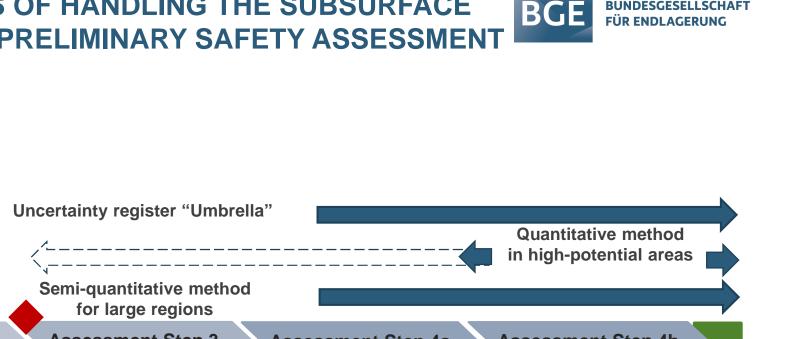
URS Final Meeting, Potsdam 05-07.02.2025

SUBSURFACE UNCERTAINTIES AND THE SITE SELECTION 01 **PROCEDURE: AN INTRODUCTION** 02 THE SEMI-QUANTITATIVE METHOD 03 THE QUANTITATIVE METHOD 04 SUMMARY

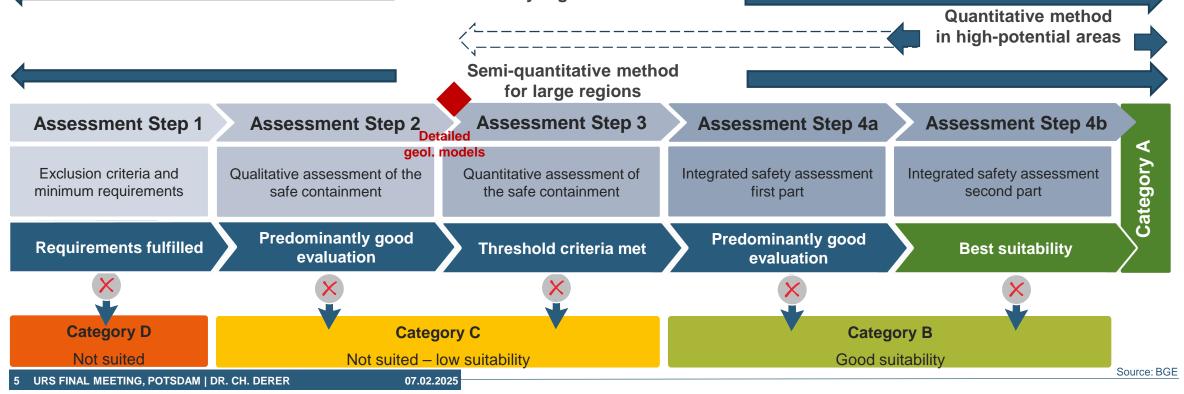
2 URS FINAL MEETING, POTSDAM | DR. CH. DERER


SUBSURFACE UNCERTAINTIES AND THE SITE SELECTION PROCEDURE: AN INTRODUCTION

3 URS FINAL MEETING, POTSDAM | DR. CH. DERER


SUBSURFACE UNCERTAINTIES IN THE SITE SELECTION PROCEDURE

- Approximately 54% of Germany's subsurface needs to be screened in order to identify a reduced number of relatively small-sized site regions
- Considered host rocks: claystone, rock salt, crystalline rocks
- BGE and Terra Geoservice developed a consistent way of efficiently assessing the subsurface uncertainty of large areas and across the various host rocks
- The evaluation of subsurface uncertainties can be used for:
 - a consistent, uncertainty weighted, comparison of areas
 - assessing the safety robustness of high-potential areas
- Subsurface uncertainties will be assessed only if they are relevant to the decisions to be made in the selection process


GZ: SG02301/11-3/36-2025#2 | Objekt-ID: 12794738

SCALE-DEPENDENT METHODS OF HANDLING THE SUBSURFACE UNCERTAINTIES DURING THE PRELIMINARY SAFETY ASSESSMENT

BUNDESGESELLSCHAFT

GZ: SG02301/11-3/36-2025#2 | Objekt-ID: 12794738

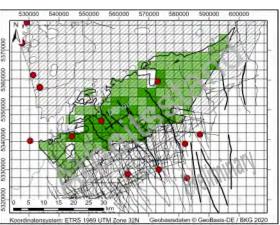
category B

category C

category [

category A

THE SEMI-QUANTITATIVE METHOD


02

6 URS FINAL MEETING, POTSDAM | DR. CH. DERER

THE DEGREE OF CONFIDENCE: A SEMI-QUANTITATIVE METHOD

- The **degree of confidence** represents the **reliability** of a given interpretation of the subsurface in a particular area
- The degree of confidence is estimated via the data status and the geological complexity of any given area or structure (i.e., salt diapir)
- Subdivides large areas in 9 km² grid cells of varying degrees of confidence
- The degree of confidence allows a weighted comparison of different areas and host rocks
- Is a modified approach from the hydrocarbon exploration "chance adequacy matrix" (Rose 2001)

"Degree of Confidence" Matrix

Geolo	ogical comp	olexity		
Complex	Moderate	Simple		
85	90	95	Very good	ality
70	80	90	Good	nb pu
50	P (65	80	Mode- rate	Data quantity and quality
30	50	70	Poor	a quar
5	30	60	Very poor	Data

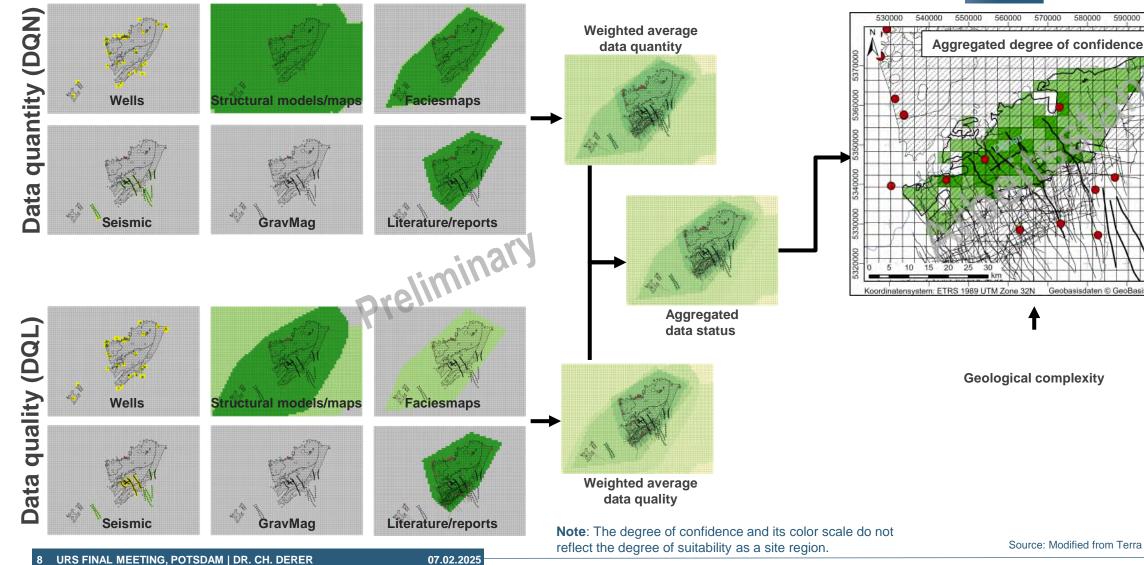
Source: Modified from Terra Geoservice

Note: The degree of confidence and its color scale do not reflect the degree of suitability as a site region.

GZ: SG02301/11-3/36-2025#2 | Objekt-ID: 12794738

THE DEGREE OF CONFIDENCE: THE WORKFLOW

580000


590000

Geobasisdaten © GeoBasis-DE / BKG 2020

600000

570000

560000

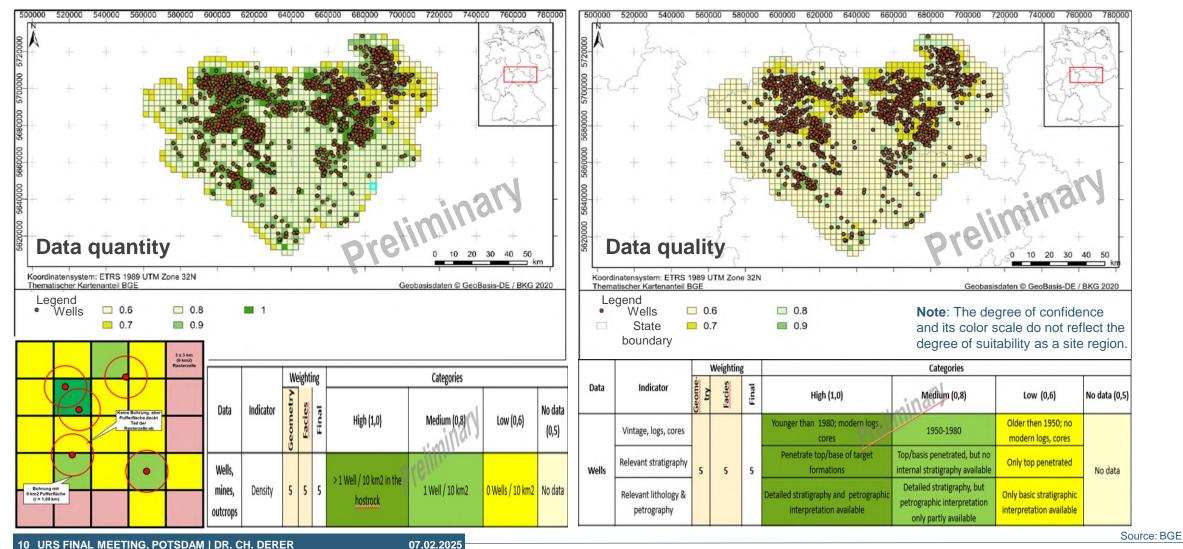
Source: Modified from Terra Geoservice

GZ: SG02301/11-3/36-2025#2 | Objekt-ID: 12794738

		Weighting		ng	Categories									
Data quantity	Indicator	Geo-	metry	Facies	Total	High (1.0)	Medium (0.8)	Low (0.6)	No data (0.5)					
Wells, outcrops	Density	5		5	5	> 1 Well / 10 km2 in the host rock	1 Well / 10 km2	0 Wells / 10 km2	No data					
Seismic	Areal coverage	3		1	2	Majority of area covered with 3D-seismic. Very dense 2D-line grid (>5 lines km / 10 km2)	Dense 2D-line grid (0.1 to 5 lines km / 10 km2); partly covered with 3D- seismic	Very sparse 2D-line grid	No data					
Data	Vintage, logs, cores					Younger than 1980; modern logs , cores	1950-1980	Before 1950; no modern logs, no cores						
quality Wells,	Stratigraphy	5	5	5	5	5	5	5	5	Penetrate top/base of target formations	Top/basis penetrated, but no internal stratigraphy	Only top penetrated	No data	
Outcrops	Lithology & petrography					Detailed stratigraphy and petrographic interpretation available	Detailed stratigraphy, but petrographic info. partly available	Only basic stratigraphy available						
	Acquisition, processing					3D or modern 2D seismic. Reprocessed (after1980) time- or depth migration	2D seismic (1950 – 1980), time-migration, metadata available	2D stacks only (before 1950), no metadata						
Data quality	Resolution, calibration, interpretation	5	5 3	3	3	4	(Near)Target horizons well imaged, good seismic-well tie.	(Near)Target horizons discernible. Uncertain correlation to wells.	(Near)Target horizon not well imaged, poor well tie	No data				
Seismic	Time-depth conversion					Simple layer-cake velocity model, plenty of well control, certain depth depiction	Medium complexity in the overburden, robust time- depth conversion	High complexity, high uncertainty of depth depiction Source: Modified from Terra						

CLASSIFICATION OF DATA QUANTITY AND QUALITY

- The classification of data performed via strict and consistent criteria
- Data types:


- Wells, mines, outcrops
- Seismic survey
- Gravimetric / magnetic survey
- Structural models
- Expert maps (e.g facies)
- Studies, literature
- Weighting of data types dependent on the host rock

Note: The degree of confidence and its color scale do not reflect the degree of suitability as a site region.

URS FINAL MEETING, POTSDAM | DR. CH. DERER

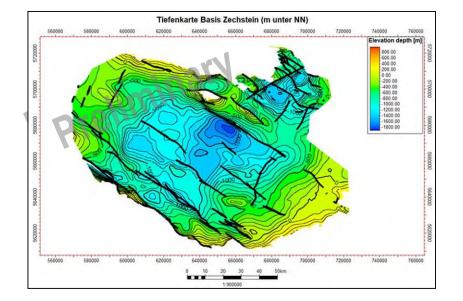
ESTIMATING DATA QUANTITY AND QUALITY

GZ: SG02301/11-3/36-2025#2 | Objekt-ID: 12794738

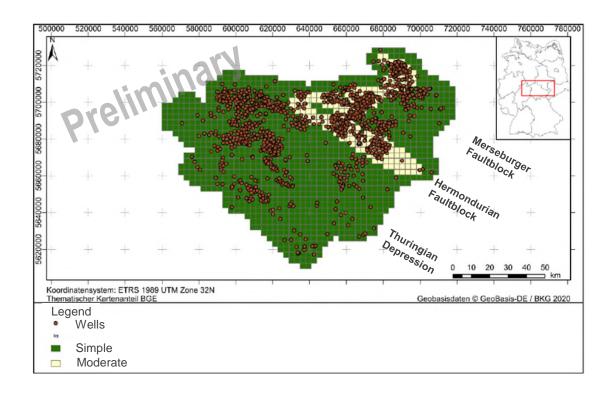
CLASSIFICATION OF THE GEOLOGICAL COMPLEXITY: CLAYSTONE AND CONFORMABLE SALT STRATA

	Factors	Simple	Moderate	Complex	
cies	Basin type and evolution	Regional, simple depocenter	eliminars	Varying small-scaled depocenters, syn- sedimentary tectonics and erosion	•
//fac	Palaeogeography	Basin center		Basin margin	
Lithology / facies	Depositional setting, facies, diagenesis	Homogenous lithofacies on scale > 100 km²; uniform diagenesis		Heterogeneous facies, with unfavorable intercalations. Frequent lateral and/or vertical lithofacies variations	-
ure	Regional structural setting (tectonics, deformation)	Regionally uniform		Locally variable	
ic and structure	Degree of structural deformation, fault density	Horizontal or regional low-angle dipping formations. Low fault density.		Numerous regional and sub-regional faults, sub-regional tectonics with numerous fault blocks	
Tectonic	Regional subsidence and/or uplift history	Simple tectonics, simple subsidence and/or uplift		Polyphase tectonics (e.g. inversion), with varying stress-regime and complex thermal history	N d

- The geological complexity is estimated on regional (basin, sub-basin) scale
- The geological complexity is given by two elements:
 - Regional variations of facies
 - Regional variations of structural (deformation) features

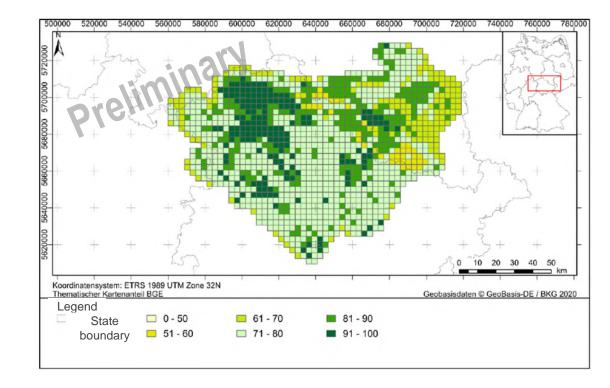

Note: The degree of confidence and its color scale do not reflect the degree of suitability as a site region.

Source: Modified from Terra Geoservice


11 URS FINAL MEETING, POTSDAM | DR. CH. DERER

ESTIMATING THE GEOLOGICAL COMPLEXITY

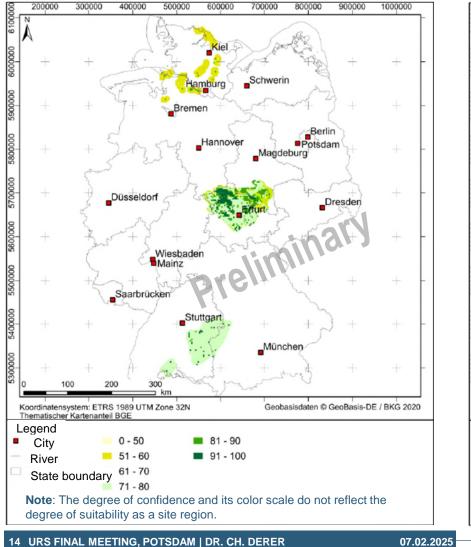
Structural map

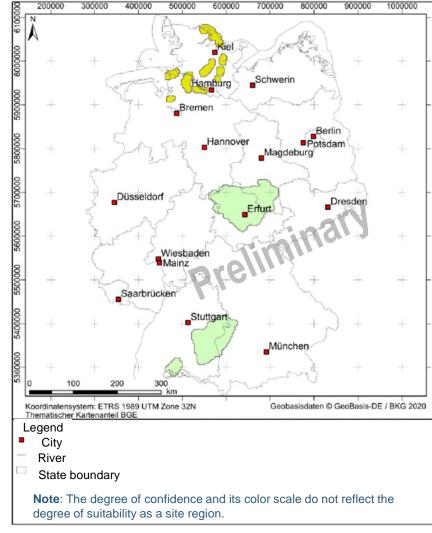

Estimated geological complexity

Note: The degree of confidence and its color scale do not reflect the degree of suitability as a site region.

THE AGGREGATED DEGREE OF CONFIDENCE

Geo				
Complex	Moderate	Simple		
85	90	95	Very good	ity
70	80	90	Good	Data quantity and quality
50	65	80	Mod- erate	ntity ar
30	50	70	Poor	ata qua
5	30	60	Very poor	Ď

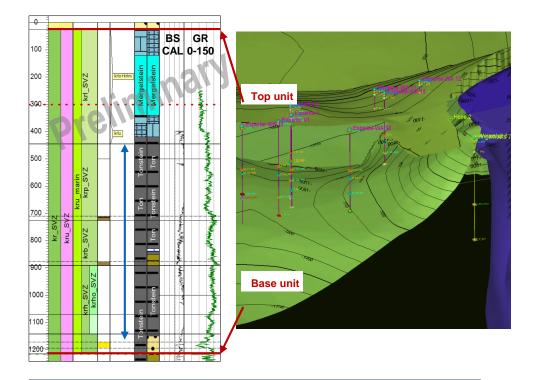


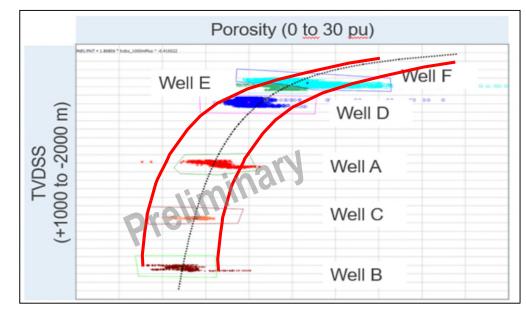

The aggregated degree of confidence

Note: The degree of confidence and its color scale do not reflect the degree of suitability as a site region.

DEGREE OF CONFIDENCE: DETAILED AND AVERAGE

THE QUANTITATIVE METHOD

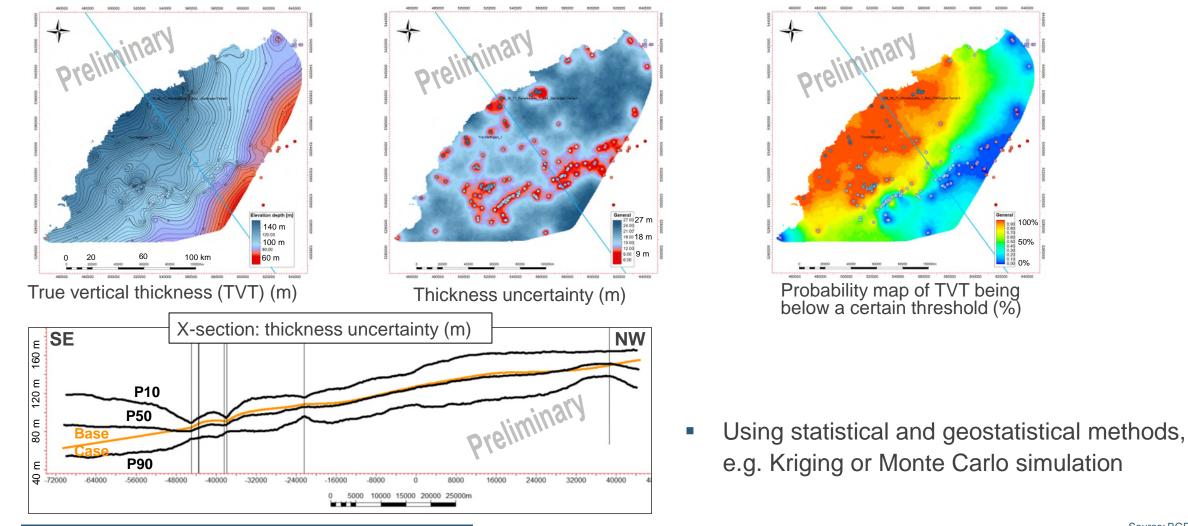

03


15 URS FINAL MEETING, POTSDAM | DR. CH. DERER

THE QUANTITATIVE METHOD

- Quantifies ranges of key parameters (e.g. thickness, porosity, etc.) and is applied on smaller, high-potential areas, assessing their robustness in terms of safety requirements
- E.g. applied in 3D-geomodels and during the transport simulation via statistical and geostatistical methods

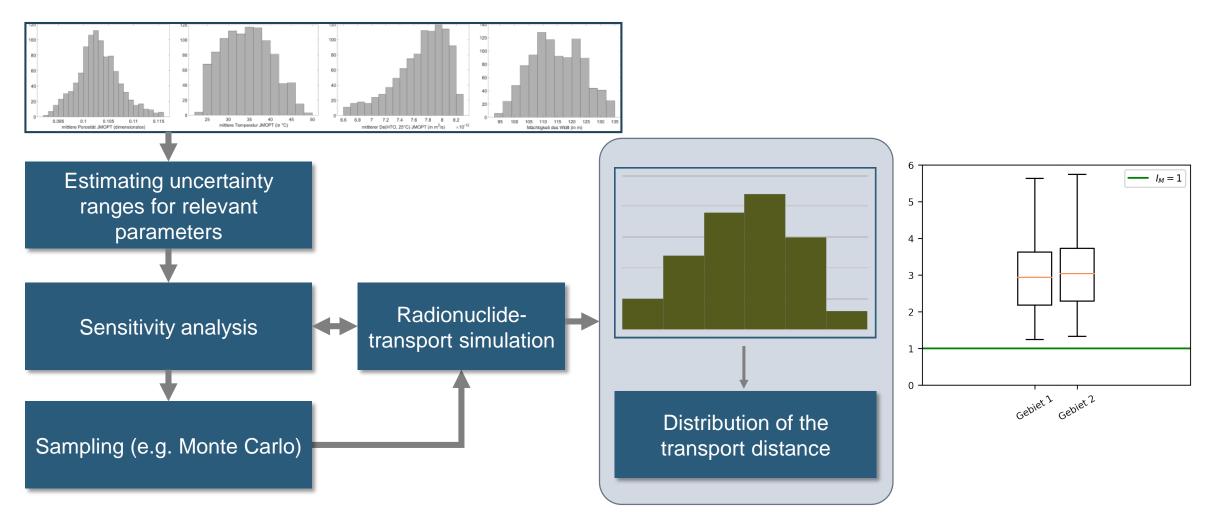
Uncertainty envelopes for the porosity-depth relation


16 URS FINAL MEETING, POTSDAM | DR. CH. DERER

100%

50%

ASSESSMENT OF THE THICKNESS UNCERTAINTY



17

IMPACT OF PARAMETER UNCERTAINTY RANGES ON THE SIMULATED TRANSPORT DISTANCE: THE WORKFLOW FOR CLAYSTONE

18 URS FINAL MEETING, POTSDAM | DR. CH. DERER

Source: BGE

SUMMARY 02

19 URS FINAL MEETING, POTSDAM | DR. CH. DERER

GZ: SG02301/11-3/36-2025#2 | Objekt-ID: 12794738

SUMMARY

- Subsurface uncertainties are assessed when relevant for the decisions within preliminary safety assessment
- Scale-dependent methods for assessing the subsurface uncertainties are used, depending on the goal:
 - 1. The semi-quantitative method:
 - is used for the screening of large areas
 - allows a consistent uncertainty-weighted comparison of regions characterized by different data and geological complexity
 - 2. The quantitative method:
 - is used on small, high-potential areas in order to assess their robustness in terms of safety requirements
 - is performed in 3D-geological models and the transport simulation via statistical and geostatistical methods
 - 3. Geological risk elements (e.g. faults) potentially impacting the safety requirements, which are not included in the best estimate or in any other uncertainty realization, are recorded in the geological risk register

REFERENCES

 Peter Rose (2001) Risk Analysis and Management of Petroleum Exploration Ventures. AAPG Methods in Exploration Series, No. 12