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 Final disposal of high level nuclear waste (heat generating) in deep geological 
formations

 Isolating waste from biosphere
 Safety time span of 1 million years
 3 possible host rocks: clay, cristalline and salt rock
 This project is focussing on salt domes
 Salt rock (salt domes) have been investigated intensively in Germany 

(Gorleben)

RADoN Project
Motivation
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RADoN Project

Quantitative risk assessment which takes into account the combined effect of

 One of the most challenging part is to identify the hazardous (and 
not hazardous) events and describe their relationships (CDFs).

 This process is expert-knowledge based.
 The model must be able to update all the assumptions on hazardous 

events CDFs whenever data became available.

All relevant sources of 
uncertainty 

Hazardous 
events with 

their probability 
and 

dependencies 

e.g.
• subsurface 

structure
• material properties
• BCs
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Spectrum of uncertainties

Modelling

“Lack-of-knowledge” / Epistemic
Uncertainties

Physical

“Unavoidable” / Aleatory
Uncertainties

ModellingPhysical

16.05.2023 Matteo Broggi, Andrea Perin 4



Aleatory uncertainties

• Random variables
• Random 

parameters, e.g., 
spring stiffness, 
dimension, static 
load

• Stochastic 
processes

• Random functions 
of time e.g. 
Excitation time 
history, earthquake, 
dynamic load

• Random fields
• Spatially 

fluctuating  
properties e.g. 
Young’s modulus, 
Shell thickness
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Epistemic uncertainties

 Statistical information often not 
available
 e.g. unique structure

 Lack of knowledge
 e.g. few or missing data

 Qualitative information
 e.g. expert judgements
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                           of
imprecise and rare data

Is the
reliability analysis
still reliable ?

Is it safe ?statistical analysis

Effects on Pf ?

reliability
analysis

F(x)

model

Pf

~

~

set of plausible
         s

[Pf,l, Pf,r]
imprecision
reflected in Pf

Sensitivity of Pf to imprecision ?

Vague and imprecise information
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Bayesian Networks Enhanced with Structural Reliability 
Methods

• System’s state can be: 
 ‘safe’ with a given set of parameters 
 ‘not safe’ with a slightly changed set of parameters

Structural Reliability Methods Bayesian Networks

• When one (or more) parameter/s of the system are 
affected by uncertainties:

• Parameter/s becomes random variable/s ‘’ 
• System state became dependent on random 

variable/s 

• For evaluating the reliability of a system in different 
scenarios

• Specific featurse:
 Bayesian Update of 

marginal probabilities 
(once new data ‘E’ 
becames available)

 what-if analysis 
 propagation of the 

information on the 
direction of interest 

• General features:
 multidisciplinary-

usability
 Human-readbility
 Compact-

representation
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Bayesian Networks - Structure
• Nodes

• Parent: node influencing others
• Root: node with no parents

• Edges
• Causal dependencies
• Local Markov property verified

• Conditional Probability Distribution: 
• Discrete: CPT (2n+1 entries if Boolean with n 

parents)
• Continuous: Normal or Gaussian

Bayes’ Theorem allows to combine the conditional probabilities to propagate the 
evidence along the network in the direction of interest.

i.e.  "What is the probability that it is raining, given the 
grass is wet?“

 

B
otto
m
-u
p𝑃 (𝑆∨𝑅 )=𝑃(𝑆,𝑅)

𝑃(𝑅)
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Bayesian Networks
How does it work

D2= d2 D2= d2

D1=d1 D3=d3 0.1 0.9

D1=d1 D3=d3 0.4 0.6

D1=d1 D3=d3 0.14 0.86

D1=d1 D3=d1 0.7 0.3

D1=d1 D1=d1

0.8 0.2
D3=d3 D3=d3

0.75 0.25

𝑃(𝐷1 , 𝐷2 ,𝐷3)=P (D2|D 1, D 3) P (D 1) P(D 3)
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Bayesian Networks
Scope and strategies

Capture 
Complexity

Represent 
Uncertainty

Bayesian Networks

Suitable models

Enha
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d
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e
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o
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EBN properties

IDEA HOW

eBNs (BNs Enhanced with SRM) are a tool able to:

• Implement Discrete and Continuous rvs
• With arbitrary distributions
• And any dependency

Formall
y

• Discrete nodes have a finite 
sample space

• Continuous nodes are 
vectors of continuous rvs

• System pdf is expressed by 
the combined effect of 
continous and discrete rvs

𝑓 (𝒁 )= ∏
𝑌𝑖∈ 𝒀

𝑓 (𝑦𝑖|𝑝𝑎 [𝑌𝑖 ])+ ∏
𝑋𝑖∈ 𝑿

𝑓 (𝑥𝑖|𝑝𝑎 [𝑋𝑖 ])System 
pdf:

The problem of the evaluation of discrete 
probabilities (or pdf) of each node with at least 
one continuous parent has the same 
mathematical form of a System Reliability 
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Enhanced Bayesian Networks
Different form of information

Probabilistic Models

Imprecise Probability Models

Possibilistic
Models
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Numerical Implementation of EBNs

• Under development in Julia
• Based on UQ.jl Library (developed @IRZ, covers the Structural Reliability 

Methodologies and uncertainty quantification)

 Developing a general purposes library for exploiting eBN in any 
application  

          The implementation of the EBN is the main ongoing task underlying all future 
research!

• able to deal with continuous and discrete events (nodes)
• able to deal with ExternalModel as function that connects one event with its parents
• able to use different advanced Monte Carlo simulation to get the probability of failure
• Not able yet to consider evidences on continuous events (WIP)
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 Current State of the eBN framework

 Why Julia?
• More feature complete programming language
• Free to use and distribute
• Faster than MATLAB and easily parallelizable (both code and license…)

https://julialang.org/
https://github.com/FriesischScott/UncertaintyQuantification.jl


Numerical Implementation of EBNs

 Nodes

 CPDs

BayesianNetworks

Implemented so far

• Structure to define the Conditional Probability Distribution (Discrete or 
Continuous) as:

1) RootCPD 
2) StdCPD 
3) FunctionalCPD

• Structure to define the nodes of the eBN (Discrete or Continuous) as:
1) RootNODE
2) StdNODE 
3) FunctionalNODE (both Function or ExternalModel)

• Structure to define the the Bayesian Network as Direct Acyclic Graph and perform the evaluation of each JointCPD given any 
evidence, as:

1) StdBayesianNetwork
2) EnhancedBayesianNetwork
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Thermo Hydraulic Model – Problem definition

 FE model (smoker.exe) is used to obtain matrices of 
head, temperature and concentration values at 
different time.

Case of Study

 The Salt Dome Problem: 
• Transport of solute (radioactive contaminant) 

due to groundwater flow within a salt dome 
(salt dissolution affects flow velocity and vice-
versa)  In order to distinguish between safe/not-safe salt 

dome’s final state the FE output (matrices) needs to 
be

Risk Assessment

 Identification of the scenarios the affects FE 
model’s inputs, and evaluation of the consequent 
outputs to determine if the final state is safe or not

• Post-Processesed to obtain single 
values

• Evaluated through a Performance 
Function to obtain a boolean output
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𝑡=𝑡𝑜 𝑡=𝑡𝑠𝑠𝑡=𝑡𝑖

{… }

Spatial Matrix of Head 
at time  

Spatial Matrix of 
Temperature at time  

Spatial Matrix of 
Concentration at time  

Model’s output

Post-Processing + Performance Function

Post-Processing 
function

Single
Value

Performance
function  

Safe

Not Safe

Thermo Hydraulic Model – Quantities of interest
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Thermo Hydraulic Model – Proof of Concept of EBN

 Nodes:

• 2 Discrete Root Nodes 
• 1 Continuous Root Node with distribution 

given by a Truncated Normal Distribution.
• 1 Continuous Standard Node with distribution 

dependent on its parent
• 1 Discrete Functional Node where the CPD is 

defined through the TH_model

Proof of Concept

 Model:

• The TH_model used to obtain the probabilities 
of failure is a simple one with 1 specie, no 
heat transfer considered and a coarse mesh.
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Reduced Bayesian Network
 Reduced Bayesian Network (rBN)

• Is the network obtained after applying the “Node 
Elimination Algorithm”

• rBN defines the number of Structural Reliability 
Problem that have to be solved in order to obtain 
the probabilities of failure

 Structural Reliability Problems (SRPs)

• 4 SRPs needs to be solved, one SRP for each 
combination of the parents determination in the 
rBN

Thermo Hydraulic Model – Reduced Bayesian Network
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Discrete Parents Node Continous Parents Node

Thermo Hydraulic Model – Nodes and External Models
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Thermo Hydraulic Model – Results

Max{Concentration} < 2.2

PERFORMANCE FUNCTION
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Surrogate Model - ANN

𝑡=𝑡𝑜 𝑡=𝑡𝑠𝑠

Output
1 or 2

10ˆ2

10ˆ2

outputs 3 [c;T;h]

𝑥𝑑𝑖𝑠𝑐

𝑧𝑑𝑖𝑠𝑐

𝑃𝑎𝑟

𝑅𝑉𝑠

With a 24h simulation we obtain 1 output sample of 10ˆ4 
dimension!

FE Models are too computational expensive in a framework where are required to be run 
several times in different scenarios, especially when low probability of failure have to be 

established

Flattening

𝑃𝑎𝑟

𝑅𝑉𝑠

𝑥
𝑧
𝑡

𝑨𝑵𝑵

𝑡=𝑡𝑜 𝑡=𝑡𝑠𝑠

 Reduce Output Dimensionality
 Increase Dataset size

Instead of predicting matrices, the ANN will predict a 
triplet (c;T;h) for a specific time-spatial coordinate 
(x;z;t)
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Surrogate Model - PINN

 ANN should approximate a Model, not real 
world

WHY?

IDEA

 Including Prior Scientific Knowledge 
in the ML workflow into the NN loss 
function. 

 In ANN framework, computation of 
derivatives (of any order) with respect to 
any input/s is computationally cheap

“Physics-informed neural networks: A deep learning 
framework for solving forward and inverse problems 
involving nonlinear partial differential equations”  M. 

Raissi

 The most important contribution to NN loss 
function is taken as the residual of DE

CHALLENGE
Establish the differential equations, boundary and initial 
conditions that address the physical part of the PINN, 
and implement them in order to obtain the residuals!

NN AD Physics Informed
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Next Step

• Finalise ‘EnhancedBayesianNetwork’ structures 
adding the capability to deal with evidences on continuous 
nodes

eBN Library RADON Project

• Identification and implementation of test cases (e.g. 
Straub 2019 – Bayesian Network Enhanced with Structural 
Reliability Methods: Methodology )

• Identification of the events (eBN nodes) and their 
influences on THC model’s inputs (e.g. NEA report - 
Updating the NEA International FEP List An Integration 
Group for the Safety Case (IGSC) Technical Note)

• Implementation of Salt Dome case

Upgrade eBN to imprecise probabilities
• Introduction of ‘Imprecise Probability’ through Interval Variables => Enhanced ‘Credal Networks’ 

• Efficient simulation tools to avoid “double loop” computational expenses

• Developing Surrogate Model for TH Model (ANN or PCE or 
GP) 

• Present extended abstract at ESREL 2023
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