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• Data processing can compensate for missing 

or inadequate data only to a certain extent

• Survey optimization aims at optimizing the 

information content of (geo)physical data 

sets 

• Limit amount of data without (drastically) 

reducing their information content 

Optimal Experimental Design – Theoretical background
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Optimal Experimental Design – Methodology

Examples for optimization of geophysical survey designs:

• Compare-R method for geoelectrical measurements

• Seismic OED with Full Waveform Inversion

• Multi-methodological Bayesian survey optimization 
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Optimal Experimental Design – Methodology

“Compare-R” method:

• Uses resolution matrix of linearized Gauss-Newton solution for ERT problem; defined as:

𝑅 = 𝐺𝑇𝐺 + 𝐶 −1 𝐺𝑇𝐺

• Iterative optimization starts from a set of base measurements -> calculation of change in resolution matrix 

for each possible new measurement:

∆𝑅𝑏 =
𝑧

1+ 𝑔∗𝑧
𝑔𝑇 − 𝑦𝑇 where 𝑧 = 𝐺𝑏
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−1
𝑔, 𝑦 = 𝐺𝑏

𝑇𝐺𝑏 𝑧

• All additional measurements are ranked according to improvement of resolution matrix:
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• Depending on chosen step size, n measurements with greatest benefit are added to base set
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Optimal Experimental Design – Methodology

“Compare-R” method:
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Optimal Experimental Design – Methodology

Examples for optimization of geophysical survey designs:

• Compare-R method for geoelectrical measurements

• Seismic OED with Full Waveform Inversion

• Multi-methodological Bayesian survey optimization

However, existing OED approaches are neither process-based nor applicable to joint inversions.

• Apply OED to process-based inversions in context of repository monitoring

• Utilize multiple (geo)physical input datasets in one OED approach
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Reference scenarios

Geological scenario claystone 1:

• Claystones of Barremian and Hauterivian age 

(cretaceous)

• Depth of host rocks: 500 bis 850 m below ground level

• Underlying: Formations of Jurassic and Triassic

• Overlying: Upper Cretaceous and Cenozoic units

• Model represents geologic conditions of Northern 

Germany (according to Reinhold et al., 2013)
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Reference scenarios

Geological scenario claystone 2:

• Second model represents Opalinus clay formation in 

Southern Germany (Mid_Jurassic_1)

• Depth of host rock formation: 600-800 m below surface

• Underlying: Jurassic and Keuper

• Overlying: Upper Jurassic, Tertiary

• Karstification of limestone layers

• Model represents geologic conditions of Swabian Alb 

and comparable regions
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Reference scenarios

Geological scenario stratiform rock salt:

• Model focuses on rock salt of the Zechstein (in 

particular: Straßfurt formation)

• Depth of the host rock: 600-850 m below surface 

• Underlying: Zechstein anhydrite and Keuper

• Overlying: younger Zechstein succession, Bunter, 

Cenozioc sedimentary rocks 

• Model information are taken from the KOSINA project 

(BGR, 2017)
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Reference scenarios

Geological scenario granite:

• Crystalline Model in Granite

• Depth of the host rock: < 900 m below surface

• Underlying: -

• Overlying: Triassic sediments

• Model represents geology of the mitteldeutsche

Kristallinschwelle
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Reference scenarios

Physical model parameters:

• Stored as YAML-files, containing most relevant physical properties of formations in reference models:

• Density

• (Effective) porosity

• Permeability

• Heat capacity

• Heat conductivity

• Seismic velocities

• Specific electrical resistivity

• Diffusivity
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Reference scenarios

Synthetic models are based on Europe-wide studies:

• Claystone: Mont Terri URL (Switzerland), ANDRA URL (France), ANSICHT (Germany)

• Rock salt: German salt structures (Gorleben, Asse)

• Crystalline: Äspo URL (Sweden), TURVA (Finland)

However, do the synthetic models represent scenarios that are close enough to real geological conditions?

• Further research on more realistic 3D structures (in cooperation with GeoBlocks)
• Plutonites of the Erzgebirge 

• Salt domes of central and northern Germany
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Smart monitoring – next steps

Optimal Experimental Design:

• Apply “Compare-R” method to reference cases as process-based inversion and survey optimization 

technique

• Simulate time-lapse inversions using OED 

• Implement seismic forward simulations and inversions on reference models

• Work on OED for joint inversion approaches

Reference scenarios:

• Implement more realistic 3D reference scenarios for crystalline and (non-stratiform) saline host rocks
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